{"title":"Shape-programmable hard-magnetic soft actuators with high magnetic particle content via digital light processing method","authors":"","doi":"10.1016/j.compositesa.2024.108554","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we developed a novel hard-magnetic photosensitive suspension with high solid loadings of 50 wt% for digital light processing 3D printing. The suspension combining photosensitive resin and reactive diluent can retain stability for 6 h. The printed materials from the suspension achieve a low modulus of below 900 kPa and high remanence of 83.7 kA/m. The suspension’s cure behavior was studied in detail to obtain the optimal printing parameters. The printing error of the small structures with feature size of about 1000 μm is kept below 20 %. Moreover, we proposed an efficient magnetization programming strategy for hard-magnetic soft actuators with desirable shapes based on the rod model considering the non-magnetic load. The accuracy and reliability of the strategy are verified by the experiment results. Finally, we designed and fabricated a “flower” using our method, achieving its closing action in accordance with the prescribed shape.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24005529","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we developed a novel hard-magnetic photosensitive suspension with high solid loadings of 50 wt% for digital light processing 3D printing. The suspension combining photosensitive resin and reactive diluent can retain stability for 6 h. The printed materials from the suspension achieve a low modulus of below 900 kPa and high remanence of 83.7 kA/m. The suspension’s cure behavior was studied in detail to obtain the optimal printing parameters. The printing error of the small structures with feature size of about 1000 μm is kept below 20 %. Moreover, we proposed an efficient magnetization programming strategy for hard-magnetic soft actuators with desirable shapes based on the rod model considering the non-magnetic load. The accuracy and reliability of the strategy are verified by the experiment results. Finally, we designed and fabricated a “flower” using our method, achieving its closing action in accordance with the prescribed shape.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.