Shape-programmable hard-magnetic soft actuators with high magnetic particle content via digital light processing method

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING Composites Part A: Applied Science and Manufacturing Pub Date : 2024-10-26 DOI:10.1016/j.compositesa.2024.108554
{"title":"Shape-programmable hard-magnetic soft actuators with high magnetic particle content via digital light processing method","authors":"","doi":"10.1016/j.compositesa.2024.108554","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we developed a novel hard-magnetic photosensitive suspension with high solid loadings of 50 wt% for digital light processing 3D printing. The suspension combining photosensitive resin and reactive diluent can retain stability for 6 h. The printed materials from the suspension achieve a low modulus of below 900 kPa and high remanence of 83.7 kA/m. The suspension’s cure behavior was studied in detail to obtain the optimal printing parameters. The printing error of the small structures with feature size of about 1000 μm is kept below 20 %. Moreover, we proposed an efficient magnetization programming strategy for hard-magnetic soft actuators with desirable shapes based on the rod model considering the non-magnetic load. The accuracy and reliability of the strategy are verified by the experiment results. Finally, we designed and fabricated a “flower” using our method, achieving its closing action in accordance with the prescribed shape.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24005529","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we developed a novel hard-magnetic photosensitive suspension with high solid loadings of 50 wt% for digital light processing 3D printing. The suspension combining photosensitive resin and reactive diluent can retain stability for 6 h. The printed materials from the suspension achieve a low modulus of below 900 kPa and high remanence of 83.7 kA/m. The suspension’s cure behavior was studied in detail to obtain the optimal printing parameters. The printing error of the small structures with feature size of about 1000 μm is kept below 20 %. Moreover, we proposed an efficient magnetization programming strategy for hard-magnetic soft actuators with desirable shapes based on the rod model considering the non-magnetic load. The accuracy and reliability of the strategy are verified by the experiment results. Finally, we designed and fabricated a “flower” using our method, achieving its closing action in accordance with the prescribed shape.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过数字光处理方法实现形状可编程的高磁粉含量硬磁软致动器
在这项工作中,我们开发了一种新型硬磁性光敏悬浮液,其固含量高达 50 wt%,可用于数字光处理 3D 打印。该悬浮液结合了光敏树脂和活性稀释剂,可保持 6 小时的稳定性。使用该悬浮液打印出的材料具有低于 900 kPa 的低模量和 83.7 kA/m 的高剩磁。为了获得最佳印刷参数,我们对悬浮液的固化行为进行了详细研究。特征尺寸约为 1000 μm 的小型结构的印刷误差保持在 20% 以下。此外,我们还提出了一种高效的磁化编程策略,该策略基于考虑非磁性负载的杆模型,适用于具有理想形状的硬磁软致动器。实验结果验证了该策略的准确性和可靠性。最后,我们利用我们的方法设计并制造了一朵 "花",并按照规定的形状实现了闭合动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
期刊最新文献
Hierarchical hollow MnO/carbon fiber@WS2 composite material exhibits strong wideband electromagnetic wave attenuation Preparation of biconnected carbon fiber/Cu composites with excellent thermal and mechanical properties Editorial Board Fabrication of core–shell nickel ferrite@polypyrrole composite for broadband and efficient electromagnetic wave absorption Flexible conductive adhesives with high conductivity and infrared stealth performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1