Spin effect in the ferromagnetic organic photovoltaics cells

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Organic Electronics Pub Date : 2024-10-19 DOI:10.1016/j.orgel.2024.107151
Bin Tong , Yuee Xie , Yuanping Chen , Zhongxuan Wang
{"title":"Spin effect in the ferromagnetic organic photovoltaics cells","authors":"Bin Tong ,&nbsp;Yuee Xie ,&nbsp;Yuanping Chen ,&nbsp;Zhongxuan Wang","doi":"10.1016/j.orgel.2024.107151","DOIUrl":null,"url":null,"abstract":"<div><div>In organic photovoltaic devices, the separation and transport of photogenerated charges play crucial roles for power conversion efficiency. Magnetic doping in organic solar cells can effectively enhance the power conversion efficiency by introducing a static magnetic field. In this study, we observed that in pure organic magnetic solar cells, the spin-polarization-induced spin scattering effect can also efficiently modulate the photocurrent in solar cells. Compared to the demagnetized state, the short-circuit current of PTB7:nw-P3HT:PCBM solar cells increased by approximately 0.3 % after magnetization. The dielectric constant only increased by about 0.05 %. However, above the Curie temperature 310 K, the long-range spin order in PTB7:nw-P3HT:PCBM solar cells disappears, resulting in consistent circuit currents before and after magnetization. Therefore, magnetic doping can enhance the short-circuit current in organic solar cells by weakening the spin scattering effect and enhancing the charge carrier mobility.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"136 ","pages":"Article 107151"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001629","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In organic photovoltaic devices, the separation and transport of photogenerated charges play crucial roles for power conversion efficiency. Magnetic doping in organic solar cells can effectively enhance the power conversion efficiency by introducing a static magnetic field. In this study, we observed that in pure organic magnetic solar cells, the spin-polarization-induced spin scattering effect can also efficiently modulate the photocurrent in solar cells. Compared to the demagnetized state, the short-circuit current of PTB7:nw-P3HT:PCBM solar cells increased by approximately 0.3 % after magnetization. The dielectric constant only increased by about 0.05 %. However, above the Curie temperature 310 K, the long-range spin order in PTB7:nw-P3HT:PCBM solar cells disappears, resulting in consistent circuit currents before and after magnetization. Therefore, magnetic doping can enhance the short-circuit current in organic solar cells by weakening the spin scattering effect and enhancing the charge carrier mobility.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁磁性有机光伏电池中的自旋效应
在有机光伏设备中,光生电荷的分离和传输对功率转换效率起着至关重要的作用。在有机太阳能电池中掺入磁性物质可通过引入静态磁场有效提高功率转换效率。在这项研究中,我们观察到在纯有机磁性太阳能电池中,自旋极化诱导的自旋散射效应也能有效调节太阳能电池中的光电流。与去磁状态相比,PTB7:nw-P3HT:PCBM 太阳能电池的短路电流在磁化后增加了约 0.3%。介电常数仅增加了约 0.05%。然而,在居里温度 310 K 以上,PTB7:nw-P3HT:PCBM 太阳能电池中的长程自旋阶消失,导致磁化前后的电路电流一致。因此,磁掺杂可以通过削弱自旋散射效应和提高电荷载流子迁移率来增强有机太阳能电池的短路电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
期刊最新文献
High triplet hexahydroacridine derivatives as a host prevent exciton diffusion to adjacent layers in solution processed OLEDs Naphthalene-Arylamine starburst architectures: Novel hole transport materials for enhanced OLED performance Cyclic(amino)(barrelene)carbene metal amide complexes: Synthesis and thermally activated delayed fluorescence Interface modification based on norfloxacin for enhancing the performance of the inverted perovskite solar cells Recent progress in high-performance thermally activated delayed fluorescence exciplexes based on multiple reverse intersystem crossing channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1