{"title":"Demand-driven wood/bamboo doors: Carbon storage potential and greenhouse gas footprint","authors":"Zhiping Wang , Rongjun Zhao , Jinmei Xu , Shuangbao Zhang , Zhangjing Chen , Wenfa Xiao","doi":"10.1016/j.biombioe.2024.107451","DOIUrl":null,"url":null,"abstract":"<div><div>Due to large number of doors used housing and construction products, the greenhouse gas (GHG) footprint related to door manufacturing is an interesting topic. Timber and bamboo products can reduce GHG emission due to their biogenic carbon storage via photosynthesis. The scientific evidence on the climate impact using wood-based door (WBD) and bamboo-based door (BBD) to replace steel-based door (SBD) is limited. In this study, life cycle assessments for WBD, BBD, SBD were conducted to evaluate the carbon impacts of raw materials, production, transport, and end-of-life stages. The GHG footprint of WBD, BBD, and SBD ranged from 270.42 to 363.24, 285.31–398.31, and 983.8–986.76 kg CO<sub>2</sub> e/m<sup>3</sup>, respectively, indicating that the bio-based doors exhibited lower energy consumption and GHG emissions. The raw material stage (484.78–569.34 kg CO<sub>2</sub> e/m<sup>3</sup>) was identified as a major source of GHG emissions throughout the product life cycle, while hot-pressing and coating processes were identified as emission hotspots in the production stage. Regarding biogenic carbon storage, the use of bio-based materials instead of steel-based materials for fire door manufacturing significantly reduced emissions. Considering disposal methods, recycling and incineration should be prioritized over landfills. Future research should focus on field survey in raw material stage, along with conducting a technical and economic analysis. The results provide valuable guidance for selecting doors in China in term of biogenic carbon storage and resource protection.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"191 ","pages":"Article 107451"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424004045","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Due to large number of doors used housing and construction products, the greenhouse gas (GHG) footprint related to door manufacturing is an interesting topic. Timber and bamboo products can reduce GHG emission due to their biogenic carbon storage via photosynthesis. The scientific evidence on the climate impact using wood-based door (WBD) and bamboo-based door (BBD) to replace steel-based door (SBD) is limited. In this study, life cycle assessments for WBD, BBD, SBD were conducted to evaluate the carbon impacts of raw materials, production, transport, and end-of-life stages. The GHG footprint of WBD, BBD, and SBD ranged from 270.42 to 363.24, 285.31–398.31, and 983.8–986.76 kg CO2 e/m3, respectively, indicating that the bio-based doors exhibited lower energy consumption and GHG emissions. The raw material stage (484.78–569.34 kg CO2 e/m3) was identified as a major source of GHG emissions throughout the product life cycle, while hot-pressing and coating processes were identified as emission hotspots in the production stage. Regarding biogenic carbon storage, the use of bio-based materials instead of steel-based materials for fire door manufacturing significantly reduced emissions. Considering disposal methods, recycling and incineration should be prioritized over landfills. Future research should focus on field survey in raw material stage, along with conducting a technical and economic analysis. The results provide valuable guidance for selecting doors in China in term of biogenic carbon storage and resource protection.
期刊介绍:
Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials.
The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy.
Key areas covered by the journal:
• Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation.
• Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal.
• Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes
• Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation
• Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.