Demand-driven wood/bamboo doors: Carbon storage potential and greenhouse gas footprint

IF 5.8 2区 生物学 Q1 AGRICULTURAL ENGINEERING Biomass & Bioenergy Pub Date : 2024-10-30 DOI:10.1016/j.biombioe.2024.107451
Zhiping Wang , Rongjun Zhao , Jinmei Xu , Shuangbao Zhang , Zhangjing Chen , Wenfa Xiao
{"title":"Demand-driven wood/bamboo doors: Carbon storage potential and greenhouse gas footprint","authors":"Zhiping Wang ,&nbsp;Rongjun Zhao ,&nbsp;Jinmei Xu ,&nbsp;Shuangbao Zhang ,&nbsp;Zhangjing Chen ,&nbsp;Wenfa Xiao","doi":"10.1016/j.biombioe.2024.107451","DOIUrl":null,"url":null,"abstract":"<div><div>Due to large number of doors used housing and construction products, the greenhouse gas (GHG) footprint related to door manufacturing is an interesting topic. Timber and bamboo products can reduce GHG emission due to their biogenic carbon storage via photosynthesis. The scientific evidence on the climate impact using wood-based door (WBD) and bamboo-based door (BBD) to replace steel-based door (SBD) is limited. In this study, life cycle assessments for WBD, BBD, SBD were conducted to evaluate the carbon impacts of raw materials, production, transport, and end-of-life stages. The GHG footprint of WBD, BBD, and SBD ranged from 270.42 to 363.24, 285.31–398.31, and 983.8–986.76 kg CO<sub>2</sub> e/m<sup>3</sup>, respectively, indicating that the bio-based doors exhibited lower energy consumption and GHG emissions. The raw material stage (484.78–569.34 kg CO<sub>2</sub> e/m<sup>3</sup>) was identified as a major source of GHG emissions throughout the product life cycle, while hot-pressing and coating processes were identified as emission hotspots in the production stage. Regarding biogenic carbon storage, the use of bio-based materials instead of steel-based materials for fire door manufacturing significantly reduced emissions. Considering disposal methods, recycling and incineration should be prioritized over landfills. Future research should focus on field survey in raw material stage, along with conducting a technical and economic analysis. The results provide valuable guidance for selecting doors in China in term of biogenic carbon storage and resource protection.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"191 ","pages":"Article 107451"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424004045","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Due to large number of doors used housing and construction products, the greenhouse gas (GHG) footprint related to door manufacturing is an interesting topic. Timber and bamboo products can reduce GHG emission due to their biogenic carbon storage via photosynthesis. The scientific evidence on the climate impact using wood-based door (WBD) and bamboo-based door (BBD) to replace steel-based door (SBD) is limited. In this study, life cycle assessments for WBD, BBD, SBD were conducted to evaluate the carbon impacts of raw materials, production, transport, and end-of-life stages. The GHG footprint of WBD, BBD, and SBD ranged from 270.42 to 363.24, 285.31–398.31, and 983.8–986.76 kg CO2 e/m3, respectively, indicating that the bio-based doors exhibited lower energy consumption and GHG emissions. The raw material stage (484.78–569.34 kg CO2 e/m3) was identified as a major source of GHG emissions throughout the product life cycle, while hot-pressing and coating processes were identified as emission hotspots in the production stage. Regarding biogenic carbon storage, the use of bio-based materials instead of steel-based materials for fire door manufacturing significantly reduced emissions. Considering disposal methods, recycling and incineration should be prioritized over landfills. Future research should focus on field survey in raw material stage, along with conducting a technical and economic analysis. The results provide valuable guidance for selecting doors in China in term of biogenic carbon storage and resource protection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
需求驱动的木门/竹门:碳储存潜力和温室气体足迹
由于住房和建筑产品中使用了大量的门,因此与门制造相关的温室气体(GHG)足迹是一个有趣的话题。木材和竹制品通过光合作用储存生物碳,可以减少温室气体排放。关于使用木质门(WBD)和竹质门(BBD)替代钢质门(SBD)对气候影响的科学证据还很有限。本研究对 WBD、BBD 和 SBD 进行了生命周期评估,以评估原材料、生产、运输和生命终结阶段的碳影响。WBD、BBD 和 SBD 的温室气体足迹分别为 270.42 至 363.24、285.31 至 398.31 和 983.8 至 986.76 kg CO2 e/m3,表明生物基木门的能耗和温室气体排放量较低。原材料阶段(484.78-569.34 kg CO2 e/m3)被认为是整个产品生命周期的主要温室气体排放源,而热压和涂层过程被认为是生产阶段的排放热点。在生物碳储存方面,使用生物基材料代替钢基材料制造防火门大大减少了排放量。考虑到处理方法,应优先考虑回收和焚烧,而不是填埋。未来的研究应侧重于原材料阶段的实地调查,同时进行技术和经济分析。研究结果为中国在生物碳储存和资源保护方面选择防火门提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomass & Bioenergy
Biomass & Bioenergy 工程技术-能源与燃料
CiteScore
11.50
自引率
3.30%
发文量
258
审稿时长
60 days
期刊介绍: Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials. The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy. Key areas covered by the journal: • Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation. • Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal. • Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes • Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation • Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.
期刊最新文献
Studying Gaussian deconvolution and multicomponent kinetics models in Agave cellulosic fibers pyrolysis: Application in sustainable bioenergy for cleaner production Assessment of long-lived Carbon permanence in agricultural soil: Unearthing 15 years-old biochar from long-term field experiment in vineyard Hydroprocessing of waste cooking oil to produce liquid fuels over Ni-Mo and Co-Mo supported on carbon nanotubes Improving in-situ biomethanation of sewage sludge under mesophilic conditions: Performance and microbial community analysis Improved bioethanol production from corn stover using microwave-assisted protic ionic liquid pretreatment and an engineered S. cerevisiae strain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1