{"title":"Time-guided convolutional neural networks for spatiotemporal urban flood modelling","authors":"Ze Wang , Heng Lyu , Guangtao Fu , Chi Zhang","doi":"10.1016/j.jhydrol.2024.132250","DOIUrl":null,"url":null,"abstract":"<div><div>Urban flood modelling is key to understand flood risks and develop effective interventions in flood management. Deep learning (DL), known for its robust and automatic feature extraction capabilities, has been applied for urban flood predictions. However, the hybrid spatiotemporal structure of conventional DL-enabled urban flood models is limited in terms of accuracy and efficiency. To address this gap, this study develops a new DL model guided by time information. This model uses a classic CNN (Convolution Neural Network) architecture, Unet, as its backbone. Time information is integrated into inputs via an extra channel to specify the desired prediction time, facilitating the simulation of the spatiotemporal flood process. Additionally, a modified loss function is formulated to tackle the sample imbalance problem between flooded and non-flooded sites. The model performance is assessed in an urban area in Dalian, China with a total of 18 rainfall events of varying return periods. The model attains average precision and recall values of 0.90 and 0.81, respectively, across different time steps during various events. Furthermore, the model exhibits transferability in ungauged regions where a high influence of surrounding environments on local flood processes is identified by Grad-CAM (Gradient-weighted Class Activation Mapping) analysis. The results show that the new Unet model has great promise in efficiently providing accurate spatiotemporal flood simulations. The time-guided Unet model can serve as practical tools for rapid flood simulation in urban areas.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"645 ","pages":"Article 132250"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424016469","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Urban flood modelling is key to understand flood risks and develop effective interventions in flood management. Deep learning (DL), known for its robust and automatic feature extraction capabilities, has been applied for urban flood predictions. However, the hybrid spatiotemporal structure of conventional DL-enabled urban flood models is limited in terms of accuracy and efficiency. To address this gap, this study develops a new DL model guided by time information. This model uses a classic CNN (Convolution Neural Network) architecture, Unet, as its backbone. Time information is integrated into inputs via an extra channel to specify the desired prediction time, facilitating the simulation of the spatiotemporal flood process. Additionally, a modified loss function is formulated to tackle the sample imbalance problem between flooded and non-flooded sites. The model performance is assessed in an urban area in Dalian, China with a total of 18 rainfall events of varying return periods. The model attains average precision and recall values of 0.90 and 0.81, respectively, across different time steps during various events. Furthermore, the model exhibits transferability in ungauged regions where a high influence of surrounding environments on local flood processes is identified by Grad-CAM (Gradient-weighted Class Activation Mapping) analysis. The results show that the new Unet model has great promise in efficiently providing accurate spatiotemporal flood simulations. The time-guided Unet model can serve as practical tools for rapid flood simulation in urban areas.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.