{"title":"A practical strategy of electrospun fibers of polystyrene/cellulose acetate blend for atmospheric water harvesting","authors":"Somoweldeen Abosedira , Moataz Soliman , Shaker Ebrahim , Eman Fadl , Marwa Khalil","doi":"10.1016/j.aej.2024.10.070","DOIUrl":null,"url":null,"abstract":"<div><div>Atmospheric water harvesting (AWH) is an innovative and sustainable approach to deal with the expanding problem of water scarcity. Herein, the objective is to apply electrospun fiber through blended polymers of cellulose acetate (CA)/polystyrene (PS) with various ratios for collecting the water vapor from the atmosphere. A new prototype for AWH was implemented based on Peltier device. The prepared membranes were characterized by Fourier transforms infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) and hydrophilicity/hydrophobicity measurement. In CA/PS blend with a ratio of 1:1, SEM image illustrated homogenous, fine and small fibers with an average diameter 100 nm. The presence of CA increases water uptake compared to pure PS. This blend offers a moderate performance in water harvesting, with some water beads potentially forming on the PS fibers and being absorbed by the adjacent CA fibers. In 1:2 blend had a predominance of smooth and small fibers with 100 nm diameter without beads. To enhance the effectiveness of atmospheric water collection, a thermoelectric device (Peltier) in a new well-designed sealed chamber was employed. The efficiency of blended fibers of ratio 1:2 for CA/PS accomplished a collected water of 61.9 mg/cm<sup>2</sup>.hr with a contact angle of 124.7°.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"111 ","pages":"Pages 579-587"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824012341","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric water harvesting (AWH) is an innovative and sustainable approach to deal with the expanding problem of water scarcity. Herein, the objective is to apply electrospun fiber through blended polymers of cellulose acetate (CA)/polystyrene (PS) with various ratios for collecting the water vapor from the atmosphere. A new prototype for AWH was implemented based on Peltier device. The prepared membranes were characterized by Fourier transforms infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) and hydrophilicity/hydrophobicity measurement. In CA/PS blend with a ratio of 1:1, SEM image illustrated homogenous, fine and small fibers with an average diameter 100 nm. The presence of CA increases water uptake compared to pure PS. This blend offers a moderate performance in water harvesting, with some water beads potentially forming on the PS fibers and being absorbed by the adjacent CA fibers. In 1:2 blend had a predominance of smooth and small fibers with 100 nm diameter without beads. To enhance the effectiveness of atmospheric water collection, a thermoelectric device (Peltier) in a new well-designed sealed chamber was employed. The efficiency of blended fibers of ratio 1:2 for CA/PS accomplished a collected water of 61.9 mg/cm2.hr with a contact angle of 124.7°.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering