Abdul Waheed , Lu Zhuo , Minghui Wang , Xu Hailiang , Zewen Tong , Cuhan Wang , Aishajiang Aili
{"title":"Integrative mechanisms of plant salt tolerance: Biological pathways, phytohormonal regulation, and technological innovations","authors":"Abdul Waheed , Lu Zhuo , Minghui Wang , Xu Hailiang , Zewen Tong , Cuhan Wang , Aishajiang Aili","doi":"10.1016/j.stress.2024.100652","DOIUrl":null,"url":null,"abstract":"<div><div>Salt stress is a major environmental challenge that profoundly impacts plant growth and development. The ability of plants to cope with high salinity involves with a complex network of biological mechanisms including osmoregulation, redox and ionic homeostasis, and hormones or light signaling-mediated growth adjustments. These adaptive responses are governed by various functional components that interact to modulate plant stress tolerance. This review provides a comprehensive overview of the current understanding of these mechanisms, focusing on the intricate regulatory networks that underpin plant salt tolerance. We explore the processes involved in the perception of salt stress, where plants detect changes in osmotic and ionic conditions, and the subsequent signaling pathways that activate stress responses. Key phytohormones such as abscisic acid (ABA), ethylene (ET), and brassinosteroids (BRs) play pivotal roles in these processes by regulating gene expression and coordinating adaptive growth responses. Additionally, this review explores physiological mechanisms like ion homeostasis, compatible solute synthesis, and antioxidant defense, alongside the role of root microbiota in enhancing nutrient uptake and stress mitigation under salinity. Emerging nanobiotechnologies, including nano-fertilizers and stress-sensing technologies, are highlighted for their role in improving plant resilience. By integrating molecular biology, plant physiology, and advanced technologies, the review emphasizes the multidisciplinary strategies needed to develop salt-tolerant cultivars and optimize agricultural practices in saline environments.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100652"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24003051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Salt stress is a major environmental challenge that profoundly impacts plant growth and development. The ability of plants to cope with high salinity involves with a complex network of biological mechanisms including osmoregulation, redox and ionic homeostasis, and hormones or light signaling-mediated growth adjustments. These adaptive responses are governed by various functional components that interact to modulate plant stress tolerance. This review provides a comprehensive overview of the current understanding of these mechanisms, focusing on the intricate regulatory networks that underpin plant salt tolerance. We explore the processes involved in the perception of salt stress, where plants detect changes in osmotic and ionic conditions, and the subsequent signaling pathways that activate stress responses. Key phytohormones such as abscisic acid (ABA), ethylene (ET), and brassinosteroids (BRs) play pivotal roles in these processes by regulating gene expression and coordinating adaptive growth responses. Additionally, this review explores physiological mechanisms like ion homeostasis, compatible solute synthesis, and antioxidant defense, alongside the role of root microbiota in enhancing nutrient uptake and stress mitigation under salinity. Emerging nanobiotechnologies, including nano-fertilizers and stress-sensing technologies, are highlighted for their role in improving plant resilience. By integrating molecular biology, plant physiology, and advanced technologies, the review emphasizes the multidisciplinary strategies needed to develop salt-tolerant cultivars and optimize agricultural practices in saline environments.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.