MMCL: Meta-mutual contrastive learning for multi-modal medical image fusion

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Digital Signal Processing Pub Date : 2024-10-18 DOI:10.1016/j.dsp.2024.104806
Ying Zhang , Chaozhen Ma , Hongwei Ding , Yuanjing Zhu
{"title":"MMCL: Meta-mutual contrastive learning for multi-modal medical image fusion","authors":"Ying Zhang ,&nbsp;Chaozhen Ma ,&nbsp;Hongwei Ding ,&nbsp;Yuanjing Zhu","doi":"10.1016/j.dsp.2024.104806","DOIUrl":null,"url":null,"abstract":"<div><div>The number of datasets and computational efficiency are always hindrances in the multi-modal medical image fusion (MMIF) research. To address these challenges, we propose a contrastive learning framework inspired meta-mutual, which divides the medical image fusion task into subtasks and pre-trains an optimal meta-representation suitable for all subtasks. We then fine-tune our proposed network using this optimal meta-representation as initialization, achieving the best model with only a few short datasets. Additionally, extracting source image features in pairs can lead to redundant information due to the invariant and unique features of multi-modal images. Therefore, we introduce novelty mutual contrastive coupled pairs to extract both invariant and unique features from source images. Experimental results demonstrate that our method outperforms other state-of-the-art fusion methods.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104806"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004317","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The number of datasets and computational efficiency are always hindrances in the multi-modal medical image fusion (MMIF) research. To address these challenges, we propose a contrastive learning framework inspired meta-mutual, which divides the medical image fusion task into subtasks and pre-trains an optimal meta-representation suitable for all subtasks. We then fine-tune our proposed network using this optimal meta-representation as initialization, achieving the best model with only a few short datasets. Additionally, extracting source image features in pairs can lead to redundant information due to the invariant and unique features of multi-modal images. Therefore, we introduce novelty mutual contrastive coupled pairs to extract both invariant and unique features from source images. Experimental results demonstrate that our method outperforms other state-of-the-art fusion methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MMCL:用于多模态医学图像融合的元相互对比学习
在多模态医学影像融合(MMIF)研究中,数据集的数量和计算效率始终是个障碍。为了应对这些挑战,我们提出了一个受元互助启发的对比学习框架,它将医学图像融合任务划分为多个子任务,并预先训练出适合所有子任务的最优元表征。然后,我们利用这个最佳元表征作为初始化,对我们提出的网络进行微调,仅用几个简短的数据集就建立了最佳模型。此外,由于多模态图像的不变性和独特性,成对提取源图像特征可能会导致冗余信息。因此,我们引入了新颖性相互对比耦合对,从源图像中提取不变和独特的特征。实验结果表明,我们的方法优于其他最先进的融合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
期刊最新文献
Adaptive polarimetric persymmetric detection for distributed subspace targets in lognormal texture clutter MFFR-net: Multi-scale feature fusion and attentive recalibration network for deep neural speech enhancement PV-YOLO: A lightweight pedestrian and vehicle detection model based on improved YOLOv8 Efficient recurrent real video restoration IGGCN: Individual-guided graph convolution network for pedestrian trajectory prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1