Kehao Fan , Quanling Zhao , Meiyi Zou , Zhiyong Qin , Xiaoyu Peng
{"title":"Gallic acid modified and green cross-linked chitosan-dialdehyde cellulose antibacterial aerogels and adsorption of anionic dyes","authors":"Kehao Fan , Quanling Zhao , Meiyi Zou , Zhiyong Qin , Xiaoyu Peng","doi":"10.1016/j.reactfunctpolym.2024.106076","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a new green method for preparing multifunctional chitosan-based aerogels was prepared by using natural plant polyphenols instead of traditional chemical crosslinking agents. The aerogel was crosslinked by a Schiff base reaction between chitosan and cellulose aldehyde, and then functionalized with gallic acid to enhance the structure and endow antibacterial properties. The aerogel displayed a three-dimensional, cross-linked porous structure and exhibited selective adsorption of anionic dyes. The theoretical maximum adsorption capacity of amaranth was 450.89 mg/g. The adsorption process is more consistent with the pseudo-second-order kinetic model and the Langmuir isotherm model, indicating that the adsorption process is monolayer chemical adsorption. The aerogel exhibited superior adsorption performance at a pH value of 4, with the adsorption mechanism predominantly being electrostatic adsorption. The maximum inhibition zones of the aerogels on <em>E. coli</em> and <em>S. aureus</em> were 19.8 mm and 16.8 mm, respectively, and the adsorption value of Cr (VI) was greater than 160 mg/g. The chitosan-based aerogel proposed in this paper may be a promising material for treating complex wastewater containing dyes and heavy metals.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"205 ","pages":"Article 106076"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824002517","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a new green method for preparing multifunctional chitosan-based aerogels was prepared by using natural plant polyphenols instead of traditional chemical crosslinking agents. The aerogel was crosslinked by a Schiff base reaction between chitosan and cellulose aldehyde, and then functionalized with gallic acid to enhance the structure and endow antibacterial properties. The aerogel displayed a three-dimensional, cross-linked porous structure and exhibited selective adsorption of anionic dyes. The theoretical maximum adsorption capacity of amaranth was 450.89 mg/g. The adsorption process is more consistent with the pseudo-second-order kinetic model and the Langmuir isotherm model, indicating that the adsorption process is monolayer chemical adsorption. The aerogel exhibited superior adsorption performance at a pH value of 4, with the adsorption mechanism predominantly being electrostatic adsorption. The maximum inhibition zones of the aerogels on E. coli and S. aureus were 19.8 mm and 16.8 mm, respectively, and the adsorption value of Cr (VI) was greater than 160 mg/g. The chitosan-based aerogel proposed in this paper may be a promising material for treating complex wastewater containing dyes and heavy metals.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.