{"title":"Ground calibration and network of the first CATCH pathfinder","authors":"Yiming Huang, Jingyu Xiao, Lian Tao, Shuang-Nan Zhang, Qian-Qing Yin, Yusa Wang, Zijian Zhao, Chen Zhang, Qingchang Zhao, Xiang Ma, Shujie Zhao, Heng Zhou, Xiangyang Wen, Zhengwei Li, Shaolin Xiong, Juan Zhang, Qingcui Bu, Jirong Cang, Dezhi Cao, Wen Chen, Siran Ding, Yanfeng Dai, Min Gao, Yang Gao, Huilin He, Shujin Hou, Dongjie Hou, Tai Hu, Guoli Huang, Yue Huang, Liping Jia, Ge Jin, Dalin Li, Jinsong Li, Panping Li, Yajun Li, Xiaojing Liu, Ruican Ma, Lingling Men, Xingyu Pan, Liqiang Qi, Liming Song, Xianfei Sun, Qingwen Tang, Liyuan Xiong, Yibo Xu, Sheng Yang, Yanji Yang, Yong Yang, Aimei Zhang, Wei Zhang, Yifan Zhang, Yueting Zhang, Donghua Zhao, Kang Zhao, Yuxuan Zhu","doi":"10.1007/s10686-024-09963-7","DOIUrl":null,"url":null,"abstract":"<div><p>The Chasing All Transients Constellation Hunters (CATCH) space mission is focused on exploring the dynamic universe via X-ray follow-up observations of various transients. The first pathfinder of the CATCH mission, CATCH-1, was launched on June 22, 2024, alongside the Space-based multiband astronomical Variable Objects Monitor (SVOM) mission. CATCH-1 is equipped with narrow-field optimized Micro Pore Optics (MPOs) featuring a large effective area and incorporates four Silicon Drift Detectors (SDDs) in its focal plane. This paper presents the system calibration results conducted before the satellite integration. Utilizing the data on the performance of the mirror and detectors obtained through the system calibration, combined with simulated data, the ground calibration database can be established. Measuring the relative positions of the mirror and detector system, which were adjusted during system calibration, allows for accurate installation of the entire satellite. Furthermore, the paper outlines the operational workflow of the ground network post-satellite launch.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-024-09963-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Chasing All Transients Constellation Hunters (CATCH) space mission is focused on exploring the dynamic universe via X-ray follow-up observations of various transients. The first pathfinder of the CATCH mission, CATCH-1, was launched on June 22, 2024, alongside the Space-based multiband astronomical Variable Objects Monitor (SVOM) mission. CATCH-1 is equipped with narrow-field optimized Micro Pore Optics (MPOs) featuring a large effective area and incorporates four Silicon Drift Detectors (SDDs) in its focal plane. This paper presents the system calibration results conducted before the satellite integration. Utilizing the data on the performance of the mirror and detectors obtained through the system calibration, combined with simulated data, the ground calibration database can be established. Measuring the relative positions of the mirror and detector system, which were adjusted during system calibration, allows for accurate installation of the entire satellite. Furthermore, the paper outlines the operational workflow of the ground network post-satellite launch.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.