Monthly and Interannual Variations in Upwelling and Chlorophyll off the Vietnam Coast in Summer Based on Deep Learning

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY Journal of Geophysical Research-Oceans Pub Date : 2024-10-30 DOI:10.1029/2024JC021362
Qiang Lian, Haiyuan Lin, Yawen Huang, Shuwen Zhang, Zhaoyun Chen
{"title":"Monthly and Interannual Variations in Upwelling and Chlorophyll off the Vietnam Coast in Summer Based on Deep Learning","authors":"Qiang Lian,&nbsp;Haiyuan Lin,&nbsp;Yawen Huang,&nbsp;Shuwen Zhang,&nbsp;Zhaoyun Chen","doi":"10.1029/2024JC021362","DOIUrl":null,"url":null,"abstract":"<p>The deep learning technique is used to automatically identify upwelling regions off the Vietnam coast using Sea Surface Temperature (SST) data from satellite imagery. After delineating these upwelling areas, this study is pioneering in deriving the upwelling probability off the Vietnam coast, pinpointing two significant upwelling hotspots. To deepen the understanding of the individual impacts of wind and sea surface height anomalies on monthly and spatial variations in upwelling probability and chlorophyll distribution, the Empirical Orthogonal Function method was employed to analyze this data set. The upwelling probability demonstrates a close relationship with wind and sea surface height anomalies, while chlorophyll concentration correlates with the strength of the southwesterly wind. The southwesterly wind, Ekman pumping, eddy dipole, and northeastward jet have been identified as key drivers of the formation and spatial variability of upwelling in summer, albeit with varying contributions to different parts of the coastal region. The distribution of upwelling probability correlates with chlorophyll variation off the northern Vietnam coast. High chlorophyll concentration off the southern Vietnam coast is primarily influenced by the southwesterly wind that carries the Mekong River plume eastward. Furthermore, two abnormal scenarios in upwelling and chlorophyll concentration during 2010 and 2018 were analyzed, attributed to the abnormal southwesterly monsoon and coastal circulation influenced by an El Niño event and a weak La Niña event with a positive Indian Ocean Dipole, respectively. This study elucidates the dynamic processes underlying the intricate chlorophyll distribution over the continental shelf, which is influenced by both the river plume and upwelling.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021362","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The deep learning technique is used to automatically identify upwelling regions off the Vietnam coast using Sea Surface Temperature (SST) data from satellite imagery. After delineating these upwelling areas, this study is pioneering in deriving the upwelling probability off the Vietnam coast, pinpointing two significant upwelling hotspots. To deepen the understanding of the individual impacts of wind and sea surface height anomalies on monthly and spatial variations in upwelling probability and chlorophyll distribution, the Empirical Orthogonal Function method was employed to analyze this data set. The upwelling probability demonstrates a close relationship with wind and sea surface height anomalies, while chlorophyll concentration correlates with the strength of the southwesterly wind. The southwesterly wind, Ekman pumping, eddy dipole, and northeastward jet have been identified as key drivers of the formation and spatial variability of upwelling in summer, albeit with varying contributions to different parts of the coastal region. The distribution of upwelling probability correlates with chlorophyll variation off the northern Vietnam coast. High chlorophyll concentration off the southern Vietnam coast is primarily influenced by the southwesterly wind that carries the Mekong River plume eastward. Furthermore, two abnormal scenarios in upwelling and chlorophyll concentration during 2010 and 2018 were analyzed, attributed to the abnormal southwesterly monsoon and coastal circulation influenced by an El Niño event and a weak La Niña event with a positive Indian Ocean Dipole, respectively. This study elucidates the dynamic processes underlying the intricate chlorophyll distribution over the continental shelf, which is influenced by both the river plume and upwelling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的越南沿海夏季上升流和叶绿素的月度变化和年际变化
利用卫星图像中的海面温度(SST)数据,采用深度学习技术自动识别越南沿海的上升流区域。在划定这些上升流区域后,本研究开创性地推导出了越南沿海上升流概率,精确定位了两个重要的上升流热点。为了加深理解风和海面高度异常对上升流概率和叶绿素分布的月度和空间变化的单独影响,采用了经验正交函数法对该数据集进行分析。上升流概率与风力和海面高度异常有密切关系,而叶绿素浓度则与西南风的强度相关。西南风、埃克曼抽气、涡偶极子和东北向喷流被认为是夏季上升流形成和空间变化的主要驱动力,尽管它们对沿岸地区不同部分的贡献各不相同。上升流的分布与越南北部沿岸的叶绿素变化有关。越南南部沿海叶绿素浓度较高,主要是受西南风的影响,西南风携带湄公河羽流向东移动。此外,还分析了 2010 年和 2018 年上升流和叶绿素浓度的两种异常情况,分别归因于受厄尔尼诺事件和印度洋偶极子正作用的弱拉尼娜事件影响的异常西南季风和沿岸环流。该研究阐明了大陆架上受河流羽流和上升流影响的复杂叶绿素分布的动态过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
期刊最新文献
Bottom Stress and Drag on a Shallow Coral Reef Quantification of Salt Transports Due To Exchange Flow and Tidal Flow in Estuaries ENSO-Modulated Variability in Winter Shelf Circulation of the Northern South China Sea The Relative Importance of Ocean Advection and Surface Heat Fluxes During the Madden–Julian Oscillation in a Coupled Ocean–Atmosphere Model A Novel Sea State Classification Scheme of the Global CFOSAT Wind and Wave Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1