Improving Interpolating Accuracy of Weighted Mean Temperature by Using a Novel Lapse Rate Model in Compact VMF1 Product

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Earth and Space Science Pub Date : 2024-10-30 DOI:10.1029/2024EA003702
Peng Sun, Kefei Zhang, Dantong Zhu, Moufeng Wan, Ren Wang, Suqin Wu
{"title":"Improving Interpolating Accuracy of Weighted Mean Temperature by Using a Novel Lapse Rate Model in Compact VMF1 Product","authors":"Peng Sun,&nbsp;Kefei Zhang,&nbsp;Dantong Zhu,&nbsp;Moufeng Wan,&nbsp;Ren Wang,&nbsp;Suqin Wu","doi":"10.1029/2024EA003702","DOIUrl":null,"url":null,"abstract":"<p>In GNSS (Global Navigation Satellite Systems) meteorology, the accuracy of precipitable water vapor (PWV) retrieved from the tropospheric delay of GNSS signals is affected by the conversion factor. Compact VMF1 product (known as GGOS Atmosphere data) provides high-accuracy global grid-wise weighted mean temperature (<i>T</i><sub><i>m</i></sub>) values, which can be utilized to calculate the conversion factor. However, the <i>T</i><sub><i>m</i></sub> provided in the compact VMF1 data are solely ground surface values. To enhance the performance of compact VMF1 product, a new <i>T</i><sub><i>m</i></sub> lapse rate model for each grid point was developed for the purpose of reducing its surface <i>T</i><sub><i>m</i></sub> to the elevation of the GNSS site. Then the reduced <i>T</i><sub><i>m</i></sub> values over the neighboring grid points together with horizontal interpolation were used to obtain the interpolated <i>T</i><sub><i>m</i></sub> for the GNSS station. The sample data for the development of the new model were the <i>T</i><sub><i>m</i></sub> profiles obtained from ERA5 monthly averaged data spanning 2009–2018. To assess the model's performance, global radiosonde data at 504 radiosonde stations spanning 2019–2021 were employed. Results demonstrated that implementing the <i>T</i><sub><i>m</i></sub> lapse rate model significantly enhanced the accuracy of interpolating <i>T</i><sub><i>m</i></sub> values for GNSS stations with substantial height disparities from adjacent grid points, thereby improving PWV conversion accuracy. This indicates that employing the new <i>T</i><sub><i>m</i></sub> lapse rate model to adjust surface <i>T</i><sub><i>m</i></sub> data in the compact VMF1 product holds promise for enhancing its utility in GNSS meteorology.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003702","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003702","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In GNSS (Global Navigation Satellite Systems) meteorology, the accuracy of precipitable water vapor (PWV) retrieved from the tropospheric delay of GNSS signals is affected by the conversion factor. Compact VMF1 product (known as GGOS Atmosphere data) provides high-accuracy global grid-wise weighted mean temperature (Tm) values, which can be utilized to calculate the conversion factor. However, the Tm provided in the compact VMF1 data are solely ground surface values. To enhance the performance of compact VMF1 product, a new Tm lapse rate model for each grid point was developed for the purpose of reducing its surface Tm to the elevation of the GNSS site. Then the reduced Tm values over the neighboring grid points together with horizontal interpolation were used to obtain the interpolated Tm for the GNSS station. The sample data for the development of the new model were the Tm profiles obtained from ERA5 monthly averaged data spanning 2009–2018. To assess the model's performance, global radiosonde data at 504 radiosonde stations spanning 2019–2021 were employed. Results demonstrated that implementing the Tm lapse rate model significantly enhanced the accuracy of interpolating Tm values for GNSS stations with substantial height disparities from adjacent grid points, thereby improving PWV conversion accuracy. This indicates that employing the new Tm lapse rate model to adjust surface Tm data in the compact VMF1 product holds promise for enhancing its utility in GNSS meteorology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在紧凑型 VMF1 产品中使用新的降温速率模型提高加权平均气温的插值精度
在全球导航卫星系统(GNSS)气象学中,从全球导航卫星系统信号的对流层延迟中获取的可降水水汽(PWV)的准确性受到转换系数的影响。紧凑型 VMF1 产品(即全球全球观测系统大气数据)提供了高精度的全球网格加权平均温度(Tm)值,可用于计算转换系数。不过,紧凑型 VMF1 数据中提供的 Tm 值仅为地表值。为了提高紧凑型 VMF1 产品的性能,为每个网格点开发了一个新的 Tm 失效率模型,目的是将其地表 Tm 降低到全球导航卫星系统站点的海拔高度。然后,利用邻近网格点上的减小 Tm 值和水平插值法,获得全球导航卫星系统站点的插值 Tm。开发新模型的样本数据是从 2009-2018 年ERA5 月平均数据中获得的热量曲线。为评估该模型的性能,采用了 504 个无线电探空仪站的全球无线电探空仪数据,时间跨度为 2019-2021 年。结果表明,对于与相邻网格点高度差异较大的全球导航卫星系统站点,采用Tm失效率模型显著提高了Tm值的内插精度,从而提高了PWV转换精度。这表明,在紧凑型 VMF1 产品中采用新的 Tm 失效率模型来调整地表 Tm 数据,有望提高其在全球导航卫星系统气象学中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
期刊最新文献
Can Large Strains Be Accommodated by Small Faults: “Brittle Flow of Rocks” Revised 3-D Subsurface Geophysical Modeling of the Charity Shoal Structure: A Probable Late Proterozoic-Early Paleozoic Simple Impact Structure in Eastern Lake Ontario Study on Acoustic Variability Affected by Upper Ocean Dynamics in South Eastern Arabian Sea Monthly Prediction on Summer Extreme Precipitation With a Deep Learning Approach: Experiments Over the Mid-To-Lower Reaches of the Yangtze River A New Generation of Hydrological Condition Simulator Employing Physical Models and Satellite-Based Meteorological Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1