M. L. Xu, Y. B. Yang, Y. M. Deng, C. Y. Sun, Z. N. Su, C. H. Feng, S. L. Shi
Ordos Basin, one of the largest uranium resource areas in China, holds significant potential due to its favorable metallogenic geological conditions and promising potential. Early exploration efforts primarily targeted sandstone-hosted uranium deposits. Recently, the discovery of several large and super-large sandstone-type uranium deposits has revealed previously unrecognized uranium-bearing formations. However, these newly identified formations have yet to undergo systematic research on their geological conditions and metallogenesis processes, highlighting the urgent need for further investigation to advance metallogenic theory. Additionally, fault structures, which are critical to the metalization process, remain insufficiently described due to lack of comprehensive geophysical data. To bridge this gap, this study employs areal data to characterize the geophysical signatures of both traditional and newly discovered ore-bearing formations. The research delineates the distributions of primary and secondary faults, analyzes the characteristic of basement relief, and integrates basin evolution with key metallogenic factors utilizing gravity and magnetic exploration. Furthermore, the study identifies two promising metallogenic zones, offering essential insights to guide future exploration, resource development, and efficient exploitation strategies.
{"title":"Geophysics Indicator of Sandstone-Type Uranium Mineralization in the Northern Ordos Basin, China: Analysis From Gravity and Magnetic Data","authors":"M. L. Xu, Y. B. Yang, Y. M. Deng, C. Y. Sun, Z. N. Su, C. H. Feng, S. L. Shi","doi":"10.1029/2024EA003521","DOIUrl":"https://doi.org/10.1029/2024EA003521","url":null,"abstract":"<p>Ordos Basin, one of the largest uranium resource areas in China, holds significant potential due to its favorable metallogenic geological conditions and promising potential. Early exploration efforts primarily targeted sandstone-hosted uranium deposits. Recently, the discovery of several large and super-large sandstone-type uranium deposits has revealed previously unrecognized uranium-bearing formations. However, these newly identified formations have yet to undergo systematic research on their geological conditions and metallogenesis processes, highlighting the urgent need for further investigation to advance metallogenic theory. Additionally, fault structures, which are critical to the metalization process, remain insufficiently described due to lack of comprehensive geophysical data. To bridge this gap, this study employs areal data to characterize the geophysical signatures of both traditional and newly discovered ore-bearing formations. The research delineates the distributions of primary and secondary faults, analyzes the characteristic of basement relief, and integrates basin evolution with key metallogenic factors utilizing gravity and magnetic exploration. Furthermore, the study identifies two promising metallogenic zones, offering essential insights to guide future exploration, resource development, and efficient exploitation strategies.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003521","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu Chen, Shengjun Zhang, Ole Baltazar Andersen, Yongjun Jia
Satellite altimetry has been the major data source for marine geoid determination·and gravity recovery in recent decades. In general, altimetry-derived geoid and gravity anomaly models are typically released with a 1' × 1' gridding interval. However, their actual spatial resolution is far lower than the nominal ∼2 km level. Therefore, analyzing the marine geoid resolution capability from satellite altimetry observations is crucial for marine gravity recovery studies. The Surface Water and Ocean Topography (SWOT) Mission is a newly launched satellite using advanced radar technology to make headway in observing the·variability of water surface elevations, providing new information through along-track and across-track two-dimensional swath observations. Here, we present the analysis results of marine geoid resolution capability for both typical conventional nadir altimeters and the SWOT Ka-band radar interferometer (KaRIn) in 2° × 2° bins worldwide between 60°N and 60°S. We demonstrate the potential of SWOT KaRIn to capture along-track short-wavelength signals below 10 km and analyze the bin-based statistics of key marine geophysical factors correlated with this marine geoid resolution capability. Generally, SWOT KaRIn exhibits better marine geoid resolution capability over bins with large-scale seamounts or trenches.
{"title":"Along-Track Marine Geoid Resolution Enhancement With SWOT","authors":"Xu Chen, Shengjun Zhang, Ole Baltazar Andersen, Yongjun Jia","doi":"10.1029/2024EA003893","DOIUrl":"https://doi.org/10.1029/2024EA003893","url":null,"abstract":"<p>Satellite altimetry has been the major data source for marine geoid determination·and gravity recovery in recent decades. In general, altimetry-derived geoid and gravity anomaly models are typically released with a 1' × 1' gridding interval. However, their actual spatial resolution is far lower than the nominal ∼2 km level. Therefore, analyzing the marine geoid resolution capability from satellite altimetry observations is crucial for marine gravity recovery studies. The Surface Water and Ocean Topography (SWOT) Mission is a newly launched satellite using advanced radar technology to make headway in observing the·variability of water surface elevations, providing new information through along-track and across-track two-dimensional swath observations. Here, we present the analysis results of marine geoid resolution capability for both typical conventional nadir altimeters and the SWOT Ka-band radar interferometer (KaRIn) in 2° × 2° bins worldwide between 60°N and 60°S. We demonstrate the potential of SWOT KaRIn to capture along-track short-wavelength signals below 10 km and analyze the bin-based statistics of key marine geophysical factors correlated with this marine geoid resolution capability. Generally, SWOT KaRIn exhibits better marine geoid resolution capability over bins with large-scale seamounts or trenches.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003893","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}