Generation of Database of Polymer Acceptors and Machine Learning-Assisted Screening of Efficient Candidates

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL International Journal of Quantum Chemistry Pub Date : 2024-10-30 DOI:10.1002/qua.27510
Mudassir Hussain Tahir, Naeem-Ul-Haq Khan, Khalid M. Elhindi
{"title":"Generation of Database of Polymer Acceptors and Machine Learning-Assisted Screening of Efficient Candidates","authors":"Mudassir Hussain Tahir,&nbsp;Naeem-Ul-Haq Khan,&nbsp;Khalid M. Elhindi","doi":"10.1002/qua.27510","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents a comprehensive approach for designing polymer acceptors for organic photovoltaic applications through the generation of an extensive database and the application of machine learning (ML) techniques. Over 40 ML models are trained for the prediction of power conversion efficiency (PCE). Histgradient boosting regressor has appeared as best model. Almost 10 k polymers are generated and their PCE values are predicted. The chemical space of polymers has been visualized and analyzed. Cluster analysis revealed significant differences among the selected polymers. Additionally, an assessment of synthetic accessibility for these polymers indicated that the majority can be synthesized with relative ease.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 21","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27510","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive approach for designing polymer acceptors for organic photovoltaic applications through the generation of an extensive database and the application of machine learning (ML) techniques. Over 40 ML models are trained for the prediction of power conversion efficiency (PCE). Histgradient boosting regressor has appeared as best model. Almost 10 k polymers are generated and their PCE values are predicted. The chemical space of polymers has been visualized and analyzed. Cluster analysis revealed significant differences among the selected polymers. Additionally, an assessment of synthetic accessibility for these polymers indicated that the majority can be synthesized with relative ease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生成聚合物受体数据库和机器学习辅助筛选高效候选物质
本文介绍了一种通过生成大量数据库和应用机器学习(ML)技术设计有机光伏应用聚合物受体的综合方法。为预测功率转换效率(PCE),训练了 40 多个 ML 模型。Histgradient boosting 回归器成为最佳模型。生成了近 10 k 种聚合物,并预测了它们的 PCE 值。对聚合物的化学空间进行了可视化分析。聚类分析显示了所选聚合物之间的显著差异。此外,对这些聚合物的合成可得性进行的评估表明,大多数聚合物的合成相对容易。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
期刊最新文献
Issue Information Ultralarge Hyperpolarizability, Novel Ladder-Type Heteroarenes Electro-Optic Chromophores: Influence of Fused Heterocyclic π-System and Push–Pull Effect on Nonlinear Optical Properties The Interaction Between Fluorinated Additives and Imidazolyl Ionic Liquid Electrolytes in Lithium Metal Batteries: A First-Principles Study Prediction of Molar Entropy of Gaseous Molecules for a New Pὃschl-Teller Potential Model ISI Energy Change Due to an Edge Deletion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1