Achievement of comprehensive wear and thermal property of cold spayed CuCrZr coating via gradient structure design

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Letters Pub Date : 2024-10-28 DOI:10.1016/j.matlet.2024.137620
{"title":"Achievement of comprehensive wear and thermal property of cold spayed CuCrZr coating via gradient structure design","authors":"","doi":"10.1016/j.matlet.2024.137620","DOIUrl":null,"url":null,"abstract":"<div><div>To address the inherent challenge of optimizing both strength and conductivity of the CuCrZr alloy, cold spraying is employed to enhance its surface with a comprehensive range of performance attributes. A novel gradient structure, featuring a SiC/CuCrZr layer at the top and an AlN/CuCrZr layer at the bottom, successfully fulfills the comprehensive requirements for wear resistance and thermal conductivity. Results show that the composite coating is composed of extensively deformed CuCrZr particles and undeformed ceramic particles and its microhardness and thermal conductivity closely adhere to the rule of mixtures. Additionally, the gradient coating shows the equivalent wear resistance to the SiC-CuCrZr coating. This study demonstrates the remarkable versatility of cold spraying in fabricating seamless gradient coating, while achieving predictable and controllable variations in microhardness and thermal conductivity across the coating’s thickness.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24017609","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the inherent challenge of optimizing both strength and conductivity of the CuCrZr alloy, cold spraying is employed to enhance its surface with a comprehensive range of performance attributes. A novel gradient structure, featuring a SiC/CuCrZr layer at the top and an AlN/CuCrZr layer at the bottom, successfully fulfills the comprehensive requirements for wear resistance and thermal conductivity. Results show that the composite coating is composed of extensively deformed CuCrZr particles and undeformed ceramic particles and its microhardness and thermal conductivity closely adhere to the rule of mixtures. Additionally, the gradient coating shows the equivalent wear resistance to the SiC-CuCrZr coating. This study demonstrates the remarkable versatility of cold spraying in fabricating seamless gradient coating, while achieving predictable and controllable variations in microhardness and thermal conductivity across the coating’s thickness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过梯度结构设计实现冷拼 CuCrZr 涂层的综合耐磨性和热性能
为了应对优化 CuCrZr 合金强度和导电性这一固有挑战,我们采用了冷喷涂技术来增强其表面的各种性能属性。新颖的梯度结构(顶部为 SiC/CuCrZr 层,底部为 AlN/CuCrZr 层)成功地满足了耐磨性和导热性的综合要求。结果表明,该复合涂层由广泛变形的 CuCrZr 颗粒和未变形的陶瓷颗粒组成,其显微硬度和导热性能非常符合混合物的规律。此外,梯度涂层的耐磨性与 SiC-CuCrZr 涂层相当。这项研究表明,冷喷涂技术在制造无缝梯度涂层方面具有显著的多功能性,同时还能在涂层厚度范围内实现可预测、可控制的显微硬度和导热率变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
期刊最新文献
Improving the crystallinity of quaternary sputtered CIGS absorber layer properties via optimized deposition and annealing temperature Optimizing the strength-ductility balance of microalloyed Al-Mg-Si casting alloys In-situ observation of solidification process in β-solidifying γ-TiAl-based alloy Glycerol surface pretreatment enabled Cu-Cu low-temperature direct bonding in ambient air High-performance Sr1.9Fe1.45Pd0.05Mo0.5O6−δ electrode for reversible symmetrical solid oxide cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1