Hamza Mhamdi Alaoui, Chaofa Zhao, Wenbo Niu, Pierre‐Yves Hicher
{"title":"Modeling the Swelling Behavior of Clayey Geomaterials Across Scales: Advances and Challenges","authors":"Hamza Mhamdi Alaoui, Chaofa Zhao, Wenbo Niu, Pierre‐Yves Hicher","doi":"10.1002/nag.3881","DOIUrl":null,"url":null,"abstract":"Most soils and rocks contain varying fractions of clay minerals within their solid matrix. These geomaterials can exhibit a significant swelling potential toward chemo‐thermo‐hydromechanical loadings. Several multiscale modeling techniques have been developed to ascertain their swelling behavior across various scales, with molecular dynamics (MD), micromechanics‐based approaches, and double‐porosity models being the most common. MD simulation is a computational technique that applies Newton's second law of motion to depict the movement of particles within a granular system. Micromechanics‐based approaches upscale the poro‐elasticity law from the clay layer level to the sample scale through homogenization. Dual‐porosity models are generally based on elasto‐plasticity, incorporating different hydro‐mechanical laws at two distinct scales. These models have been extensively used, particularly for clayey soils and bentonites, though their application to clayey rocks has not been reported in the literature. Although their significant contribution to the understanding of clay swelling behavior, these techniques have been insufficiently reviewed, compared, and discussed mutually in the literature. This paper aims to provide a cross‐look on these multiscale approaches by presenting the theoretical background of existing formulations, highlighting breakthrough results, discussing major differences and current challenges, and proposing future perspectives.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3881","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Most soils and rocks contain varying fractions of clay minerals within their solid matrix. These geomaterials can exhibit a significant swelling potential toward chemo‐thermo‐hydromechanical loadings. Several multiscale modeling techniques have been developed to ascertain their swelling behavior across various scales, with molecular dynamics (MD), micromechanics‐based approaches, and double‐porosity models being the most common. MD simulation is a computational technique that applies Newton's second law of motion to depict the movement of particles within a granular system. Micromechanics‐based approaches upscale the poro‐elasticity law from the clay layer level to the sample scale through homogenization. Dual‐porosity models are generally based on elasto‐plasticity, incorporating different hydro‐mechanical laws at two distinct scales. These models have been extensively used, particularly for clayey soils and bentonites, though their application to clayey rocks has not been reported in the literature. Although their significant contribution to the understanding of clay swelling behavior, these techniques have been insufficiently reviewed, compared, and discussed mutually in the literature. This paper aims to provide a cross‐look on these multiscale approaches by presenting the theoretical background of existing formulations, highlighting breakthrough results, discussing major differences and current challenges, and proposing future perspectives.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.