Cohesin complex oligomerization maintains end-tethering at DNA double-strand breaks

IF 17.3 1区 生物学 Q1 CELL BIOLOGY Nature Cell Biology Pub Date : 2024-10-31 DOI:10.1038/s41556-024-01552-2
Jamie Phipps, Mathias Toulouze, Cécile Ducrot, Rafaël Costa, Clémentine Brocas, Karine Dubrana
{"title":"Cohesin complex oligomerization maintains end-tethering at DNA double-strand breaks","authors":"Jamie Phipps, Mathias Toulouze, Cécile Ducrot, Rafaël Costa, Clémentine Brocas, Karine Dubrana","doi":"10.1038/s41556-024-01552-2","DOIUrl":null,"url":null,"abstract":"<p>DNA double-strand breaks (DSBs) must be repaired to ensure genome stability. Crucially, DSB-ends must be kept together for timely repair. In <i>Saccharomyces cerevisiae</i>, two pathways mediate DSB end-tethering. One employs the Mre11–Rad50–Xrs2 (MRX) complex to physically bridge DSB-ends. Another requires the conversion of DSB-ends into single-strand DNA (ssDNA) by Exo1, but the bridging proteins are unknown. We uncover that cohesin, its loader and Smc5/6 act with Exo1 to tether DSB-ends. Remarkably, cohesin specifically impaired in oligomerization fails to tether DSB-ends, revealing a function for cohesin oligomerization. In addition to the known importance of sister chromatid cohesion, microscopy-based microfluidic experiments unveil a role for cohesin in repair by ensuring DSB end-tethering. Altogether, our findings demonstrate that oligomerization of cohesin prevents DSB end-separation and promotes DSB repair, revealing a previously undescribed mode of action and role for cohesin in safeguarding genome integrity.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"29 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41556-024-01552-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA double-strand breaks (DSBs) must be repaired to ensure genome stability. Crucially, DSB-ends must be kept together for timely repair. In Saccharomyces cerevisiae, two pathways mediate DSB end-tethering. One employs the Mre11–Rad50–Xrs2 (MRX) complex to physically bridge DSB-ends. Another requires the conversion of DSB-ends into single-strand DNA (ssDNA) by Exo1, but the bridging proteins are unknown. We uncover that cohesin, its loader and Smc5/6 act with Exo1 to tether DSB-ends. Remarkably, cohesin specifically impaired in oligomerization fails to tether DSB-ends, revealing a function for cohesin oligomerization. In addition to the known importance of sister chromatid cohesion, microscopy-based microfluidic experiments unveil a role for cohesin in repair by ensuring DSB end-tethering. Altogether, our findings demonstrate that oligomerization of cohesin prevents DSB end-separation and promotes DSB repair, revealing a previously undescribed mode of action and role for cohesin in safeguarding genome integrity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
凝聚蛋白复合物寡聚化可维持 DNA 双链断裂处的末端拴系
DNA 双链断裂(DSB)必须得到修复,以确保基因组的稳定性。至关重要的是,DSB 端必须保持在一起,以便及时修复。在酿酒酵母(Saccharomyces cerevisiae)中,有两种途径介导DSB末端拴系。一种是利用Mre11-Rad50-Xrs2(MRX)复合物来物理桥接DSB末端。另一种需要通过 Exo1 将 DSB 端部转化为单链 DNA(ssDNA),但桥接蛋白尚不清楚。我们发现,凝聚素、其加载器和 Smc5/6 与 Exo1 共同作用,将 DSB 端拴住。值得注意的是,特异性寡聚功能受损的凝聚素无法拴住DSB末端,这揭示了凝聚素寡聚的功能。除了已知的姐妹染色单体内聚的重要性外,基于显微镜的微流体实验还揭示了凝聚素通过确保DSB末端系链在修复中的作用。总之,我们的研究结果表明,凝聚素的寡聚化能防止DSB末端分离并促进DSB修复,揭示了凝聚素在保护基因组完整性方面以前未曾描述过的作用模式和角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Cell Biology
Nature Cell Biology 生物-细胞生物学
CiteScore
28.40
自引率
0.90%
发文量
219
审稿时长
3 months
期刊介绍: Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to: -Autophagy -Cancer biology -Cell adhesion and migration -Cell cycle and growth -Cell death -Chromatin and epigenetics -Cytoskeletal dynamics -Developmental biology -DNA replication and repair -Mechanisms of human disease -Mechanobiology -Membrane traffic and dynamics -Metabolism -Nuclear organization and dynamics -Organelle biology -Proteolysis and quality control -RNA biology -Signal transduction -Stem cell biology
期刊最新文献
Tripotency in human pancreas Chaperoning RNA into granules Real-time mirroring of therapy Battling Diamond-Blackfan anaemia Adapting to improve the author experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1