Tao Shao, Xianmeng Song, Zongnan Wei, Shuaibing Yang, Siying Zhang, Rong Cao, Minna Cao
{"title":"Enhancing CO2 Electroreduction with Decamethylcucurbit[5]uril-Alkaline Earth Metal Modified Pd Nanoparticles","authors":"Tao Shao, Xianmeng Song, Zongnan Wei, Shuaibing Yang, Siying Zhang, Rong Cao, Minna Cao","doi":"10.1039/d4qi02135e","DOIUrl":null,"url":null,"abstract":"Electrochemical CO2 reduction reaction (CO2RR) offers a promising pathway to convert CO2 into value-added chemicals, with CO production being a primary target. While the conversion of CO2 to CO hinges on the delicate balance of *COOH and *CO binding energies, this study introduces a series of Pd-based hybrid catalysts, Me10CB[5]-M/Pd (M=Sr, Ca, Cd), to address this challenge. The catalysts were synthesized via thermal treatment of supramolecular precursors formed by Me10CB[5], M2+, and [PdCl4]2- ions. Notably, Me10CB[5]-Sr/Pd exhibited exceptional CO selectivity (91.3% FECO at -0.7 V vs. RHE) and long-term stability. The incorporation of Me10CB[5]-Sr into the Pd catalyst system enhanced CO2 adsorption, modulated the electronic structure of Pd, and optimized the adsorption/desorption energies of critical intermediates, ultimately leading to superior CO2RR performance. This work underscores the potential of supramolecular engineering in designing high-performance electrocatalysts for CO2 conversion.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02135e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical CO2 reduction reaction (CO2RR) offers a promising pathway to convert CO2 into value-added chemicals, with CO production being a primary target. While the conversion of CO2 to CO hinges on the delicate balance of *COOH and *CO binding energies, this study introduces a series of Pd-based hybrid catalysts, Me10CB[5]-M/Pd (M=Sr, Ca, Cd), to address this challenge. The catalysts were synthesized via thermal treatment of supramolecular precursors formed by Me10CB[5], M2+, and [PdCl4]2- ions. Notably, Me10CB[5]-Sr/Pd exhibited exceptional CO selectivity (91.3% FECO at -0.7 V vs. RHE) and long-term stability. The incorporation of Me10CB[5]-Sr into the Pd catalyst system enhanced CO2 adsorption, modulated the electronic structure of Pd, and optimized the adsorption/desorption energies of critical intermediates, ultimately leading to superior CO2RR performance. This work underscores the potential of supramolecular engineering in designing high-performance electrocatalysts for CO2 conversion.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.