Identifying ecological factors mediating the spread of three invasive mosquito species: citizen science informed prediction

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY Journal of Pest Science Pub Date : 2024-10-30 DOI:10.1007/s10340-024-01841-7
László Zsolt Garamszegi, Zoltán Soltész, Tamara Szentiványi, Kornélia Kurucz, Gergely Nagy, Ákos Bede-Fazekas
{"title":"Identifying ecological factors mediating the spread of three invasive mosquito species: citizen science informed prediction","authors":"László Zsolt Garamszegi, Zoltán Soltész, Tamara Szentiványi, Kornélia Kurucz, Gergely Nagy, Ákos Bede-Fazekas","doi":"10.1007/s10340-024-01841-7","DOIUrl":null,"url":null,"abstract":"<p>Due to their potential role in pathogen transmission, invasive mosquitoes pose considerable threats to human and animal health. Several studies have identified the most important ecological drivers mediating the establishment and spread of key mosquito species (e.g., <i>Aedes aegypti</i>, and <i>Ae. albopictus</i>), and made predictions for future distribution. We evaluated the effect of an exhaustive list of environmental predictors on the distribution of three invasive species in Hungary (<i>Ae. albopictus</i>, <i>Ae. japonicus,</i> and <i>Ae. koreicus)</i> by using the same standards for data collection based on citizen science observations. Current distribution maps of these species were generated from a 5-year survey, then were compared with various predictor maps reflecting climate, habitat type, food supply, traffic, and interspecific competition by using a boosted regression trees approach that resulted in a subset of variables with the strongest impact. The best predictor sets were used to predict the probability of occurrence of the focal species for the whole country, and these predictions based on citizen science were evaluated against the results of an independent recent field surveillance. We uncovered species-specific patterns and found that different predictor sets were selected for the three different species, and only predictions for <i>Ae. albopictus</i> could be validated with direct trapping data. Therefore, citizen science informed distribution maps can be used to identify ecological predictors that determine the spread of invasive mosquitoes, and to estimate risk based on the predicted distribution in the case of <i>Ae. albopictus</i>.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"111 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01841-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their potential role in pathogen transmission, invasive mosquitoes pose considerable threats to human and animal health. Several studies have identified the most important ecological drivers mediating the establishment and spread of key mosquito species (e.g., Aedes aegypti, and Ae. albopictus), and made predictions for future distribution. We evaluated the effect of an exhaustive list of environmental predictors on the distribution of three invasive species in Hungary (Ae. albopictus, Ae. japonicus, and Ae. koreicus) by using the same standards for data collection based on citizen science observations. Current distribution maps of these species were generated from a 5-year survey, then were compared with various predictor maps reflecting climate, habitat type, food supply, traffic, and interspecific competition by using a boosted regression trees approach that resulted in a subset of variables with the strongest impact. The best predictor sets were used to predict the probability of occurrence of the focal species for the whole country, and these predictions based on citizen science were evaluated against the results of an independent recent field surveillance. We uncovered species-specific patterns and found that different predictor sets were selected for the three different species, and only predictions for Ae. albopictus could be validated with direct trapping data. Therefore, citizen science informed distribution maps can be used to identify ecological predictors that determine the spread of invasive mosquitoes, and to estimate risk based on the predicted distribution in the case of Ae. albopictus.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
确定介导三种入侵蚊子传播的生态因素:公民科学预测
由于其在病原体传播中的潜在作用,入侵蚊子对人类和动物健康构成了相当大的威胁。一些研究已经确定了介导主要蚊子物种(如埃及伊蚊和白纹伊蚊)建立和传播的最重要的生态驱动因素,并对未来的分布进行了预测。我们通过使用基于公民科学观测的相同数据收集标准,评估了详尽的环境预测因素清单对匈牙利三种入侵物种(白纹伊蚊、日本伊蚊和韩国伊蚊)分布的影响。通过为期 5 年的调查生成了这些物种的当前分布图,然后与反映气候、栖息地类型、食物供应、交通和种间竞争的各种预测图进行了比较,并采用了增强回归树方法,最终得出了影响最大的变量子集。最佳预测集被用来预测全国重点物种的出现概率,这些基于公民科学的预测与最近独立的实地监测结果进行了对比评估。我们发现了特定物种的模式,并发现针对三个不同物种选择了不同的预测集,只有针对白纹伊蚊的预测可以通过直接诱捕数据进行验证。因此,公民科学信息分布图可用于确定决定入侵蚊子传播的生态预测因子,并根据预测的白纹伊蚊分布情况来估计风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
期刊最新文献
Assessment of drive efficiency and resistance allele formation of a homing gene drive in the mosquito Aedes aegypti Exclusion of ants conditions the efficiency of an attract and reward strategy against Dysaphis plantaginea in apple orchards From a stored-product pest to a promising protein source: a U-turn of human perspective for the yellow mealworm Tenebrio molitor Biological control of pests of stored cereals with the predatory mites Blattisocius tarsalis and Cheyletus malaccensis Cover crop providing windborne pollen enhances the efficacy of biocontrol of multiple pests by Euseius sojaensis in citrus orchards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1