Electro-biodiesel empowered by co-design of microorganism and electrocatalysis

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-10-31 DOI:10.1016/j.joule.2024.10.001
Kainan Chen, Peng Zhang, Yayun Chen, Chengcheng Fei, Jiali Yu, Jiahong Zhou, Yuanhao Liang, Weiwei Li, Sisi Xiang, Susie Y. Dai, Joshua S. Yuan
{"title":"Electro-biodiesel empowered by co-design of microorganism and electrocatalysis","authors":"Kainan Chen, Peng Zhang, Yayun Chen, Chengcheng Fei, Jiali Yu, Jiahong Zhou, Yuanhao Liang, Weiwei Li, Sisi Xiang, Susie Y. Dai, Joshua S. Yuan","doi":"10.1016/j.joule.2024.10.001","DOIUrl":null,"url":null,"abstract":"Efficient and sustainable energy production is essential for climate change mitigation, yet current approaches like biofuels or electro-fuels have limitations in efficiency and product profile. We advanced a new electro-biodiesel route via integrating electrocatalysis and bioconversion to produce lipids from CO<sub>2</sub> for biodiesel. We first revealed bioenergetic and metabolic limits in C2+ intermediate utilization through simulations and metabolomics, guiding the synthetic biology design to achieve reductant balance, more ATP production, efficient lipid conversion, and higher lipid yield. Furthermore, we discovered specific ratios of ethanol and acetate to achieve co-substrate synergy, empowering bimetallic catalyst design to improve bioconversion efficiency. The microbial and catalyst co-design achieved a solar-energy-to-molecule conversion efficiency of 4.5% for CO<sub>2</sub>-to-lipid conversion. Electro-biodiesel leverages the high efficiency of electrocatalysis and longer-carbon-chain products from microbial lipid synthesis, overcoming the limitations for both electrocatalysis and bioconversion. Electro-biodiesel achieved 45 times less land usage than soybean biodiesel, competitive economics, and substantial carbon emission reduction.","PeriodicalId":343,"journal":{"name":"Joule","volume":"126 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.10.001","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and sustainable energy production is essential for climate change mitigation, yet current approaches like biofuels or electro-fuels have limitations in efficiency and product profile. We advanced a new electro-biodiesel route via integrating electrocatalysis and bioconversion to produce lipids from CO2 for biodiesel. We first revealed bioenergetic and metabolic limits in C2+ intermediate utilization through simulations and metabolomics, guiding the synthetic biology design to achieve reductant balance, more ATP production, efficient lipid conversion, and higher lipid yield. Furthermore, we discovered specific ratios of ethanol and acetate to achieve co-substrate synergy, empowering bimetallic catalyst design to improve bioconversion efficiency. The microbial and catalyst co-design achieved a solar-energy-to-molecule conversion efficiency of 4.5% for CO2-to-lipid conversion. Electro-biodiesel leverages the high efficiency of electrocatalysis and longer-carbon-chain products from microbial lipid synthesis, overcoming the limitations for both electrocatalysis and bioconversion. Electro-biodiesel achieved 45 times less land usage than soybean biodiesel, competitive economics, and substantial carbon emission reduction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过微生物和电催化的共同设计实现电生物柴油
高效和可持续的能源生产对减缓气候变化至关重要,但目前的生物燃料或电燃料等方法在效率和产品特性方面存在局限性。我们通过整合电催化和生物转化技术,推进了一条新的电生物柴油路线,利用二氧化碳生产生物柴油所需的脂质。我们首先通过模拟和代谢组学揭示了 C2+ 中间体利用过程中的生物能和代谢限制,从而指导合成生物学设计实现还原剂平衡、更多 ATP 生成、高效脂质转化和更高的脂质产量。此外,我们还发现了乙醇和醋酸的特定比例,以实现共底物协同作用,从而提高双金属催化剂的设计能力,提高生物转化效率。微生物和催化剂的协同设计使二氧化碳到脂质的太阳能分子转换效率达到 4.5%。电生物柴油利用了电催化的高效率和微生物脂质合成的长碳链产品,克服了电催化和生物转化的局限性。与大豆生物柴油相比,电生物柴油的土地使用量减少了 45 倍,经济效益极具竞争力,并大幅减少了碳排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Spin regulation through chirality in catalysis Battery health management in the era of big field data Anthracene-based energy storage Technoeconomic analysis of perovskite/silicon tandem solar modules De-doping engineering for efficient and heat-stable perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1