Cristina Mondino, Dalila Pîrvu, Junwu Huang and Matthew C. Johnson
{"title":"Axion-induced patchy screening of the Cosmic Microwave Background","authors":"Cristina Mondino, Dalila Pîrvu, Junwu Huang and Matthew C. Johnson","doi":"10.1088/1475-7516/2024/10/107","DOIUrl":null,"url":null,"abstract":"Cosmic Microwave Background (CMB) photons can undergo resonant conversion into axions in the presence of magnetized plasma distributed inside non-linear large-scale structure (LSS). This process leads to axion-induced patchy screening: secondary temperature and polarization anisotropies with a characteristic non-blackbody frequency dependence that are strongly correlated with the distribution of LSS along our past light cone. We compute the axion-induced patchy screening contribution to two- and three- point correlation functions that include CMB anisotropies and tracers of LSS within the halo model. We use these results to forecast the sensitivity of existing and future surveys to photon-axion couplings for axion masses between 2 × 10-13 eV and 3 × 10-12 eV, using a combination of empirical estimates from Planck data of the contribution from instrumental noise and foregrounds as well as modeled contributions on angular scales only accessible with future datasets. We demonstrate that an analysis using Planck and the unWISE galaxy catalogue would be complementary to the most sensitive existing astrophysical axion searches, probing couplings as small as 3 × 10-12 GeV-1, while observations from a future survey such as CMB-S4 could extend this reach by almost an additional order of magnitude.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"67 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/10/107","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cosmic Microwave Background (CMB) photons can undergo resonant conversion into axions in the presence of magnetized plasma distributed inside non-linear large-scale structure (LSS). This process leads to axion-induced patchy screening: secondary temperature and polarization anisotropies with a characteristic non-blackbody frequency dependence that are strongly correlated with the distribution of LSS along our past light cone. We compute the axion-induced patchy screening contribution to two- and three- point correlation functions that include CMB anisotropies and tracers of LSS within the halo model. We use these results to forecast the sensitivity of existing and future surveys to photon-axion couplings for axion masses between 2 × 10-13 eV and 3 × 10-12 eV, using a combination of empirical estimates from Planck data of the contribution from instrumental noise and foregrounds as well as modeled contributions on angular scales only accessible with future datasets. We demonstrate that an analysis using Planck and the unWISE galaxy catalogue would be complementary to the most sensitive existing astrophysical axion searches, probing couplings as small as 3 × 10-12 GeV-1, while observations from a future survey such as CMB-S4 could extend this reach by almost an additional order of magnitude.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.