Tailoring Ce-Centered Metal-Organic Frameworks for Fast Li+ Transport in Composite Polymer Electrolyte.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-11-13 Epub Date: 2024-10-31 DOI:10.1021/acsami.4c13525
Liyuan Wang, Lingli Dong, Liyuan Xie, Zhitao Wang, Linpo Li, Enbo Shangguan, Jing Li
{"title":"Tailoring Ce-Centered Metal-Organic Frameworks for Fast Li<sup>+</sup> Transport in Composite Polymer Electrolyte.","authors":"Liyuan Wang, Lingli Dong, Liyuan Xie, Zhitao Wang, Linpo Li, Enbo Shangguan, Jing Li","doi":"10.1021/acsami.4c13525","DOIUrl":null,"url":null,"abstract":"<p><p>Regulating metal nodes to innovate the metal-organic framework (MOF) structure is of great interest to boost the performance of MOFs-incorporated composite solid electrolytes. Herein, Ce<sup>4+</sup> with a low-lying 4f orbital is selected as metal center to coordinate with organic ligand to prepare MOF of Ce-UiO-66. The unsaturated open metal sites and defected oxygen vacancies furnish Ce-UiO-66 with strengthened Lewis acidity, which promotes Ce-UiO-66 interacting effectively with both poly(ethylene oxide) (PEO) and Li salt anions. Accordingly, Ce-UiO-66 as additive fillers can be uniformly dispersed in PEO matrix to form an advanced composite solid-state electrolyte (Ce-UiO@PEO) with accelerated Li<sup>+</sup> transport. The optimized Ce-UiO@PEO displays a boosted ionic conductivity of 4.20 × 10<sup>-4</sup> S cm<sup>-1</sup> and an improved Li<sup>+</sup> transference number of 0.39 at 60 °C, which are highly comparable to those of other MOFs@PEO electrolytes. Combined with the mechanical and thermal stabilities, such a Ce-UiO@PEO electrolyte enables Li/Li symmetric and Li/LiFePO<sub>4</sub> full cells with superior cycling stability and rate performance. The Ce-UiO@PEO electrolytes are of great potential to be applied in high-performance lithium metal batteries.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13525","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Regulating metal nodes to innovate the metal-organic framework (MOF) structure is of great interest to boost the performance of MOFs-incorporated composite solid electrolytes. Herein, Ce4+ with a low-lying 4f orbital is selected as metal center to coordinate with organic ligand to prepare MOF of Ce-UiO-66. The unsaturated open metal sites and defected oxygen vacancies furnish Ce-UiO-66 with strengthened Lewis acidity, which promotes Ce-UiO-66 interacting effectively with both poly(ethylene oxide) (PEO) and Li salt anions. Accordingly, Ce-UiO-66 as additive fillers can be uniformly dispersed in PEO matrix to form an advanced composite solid-state electrolyte (Ce-UiO@PEO) with accelerated Li+ transport. The optimized Ce-UiO@PEO displays a boosted ionic conductivity of 4.20 × 10-4 S cm-1 and an improved Li+ transference number of 0.39 at 60 °C, which are highly comparable to those of other MOFs@PEO electrolytes. Combined with the mechanical and thermal stabilities, such a Ce-UiO@PEO electrolyte enables Li/Li symmetric and Li/LiFePO4 full cells with superior cycling stability and rate performance. The Ce-UiO@PEO electrolytes are of great potential to be applied in high-performance lithium metal batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定制以铈为中心的金属有机框架,实现 Li+ 在复合聚合物电解质中的快速传输。
通过调节金属节点来创新金属有机框架(MOF)结构,对于提高MOF-掺杂复合固体电解质的性能具有重要意义。本文选择具有低位 4f 轨道的 Ce4+ 作为金属中心与有机配体配位,制备出 Ce-UiO-66 的 MOF。不饱和的开放金属位和缺陷氧空位使 Ce-UiO-66 具有更强的路易斯酸性,这促进了 Ce-UiO-66 与聚环氧乙烷(PEO)和锂盐阴离子的有效相互作用。因此,Ce-UiO-66 作为添加填料可以均匀地分散在 PEO 基体中,形成具有加速 Li+ 运输功能的先进复合固态电解质(Ce-UiO@PEO)。优化后的 Ce-UiO@PEO 在 60 °C 时离子电导率提高到 4.20 × 10-4 S cm-1,Li+传输数提高到 0.39,与其他 MOFs@PEO 电解质的离子电导率和Li+传输数相当。结合机械稳定性和热稳定性,这种 Ce-UiO@PEO 电解质能使 Li/Li 对称电池和 Li/LiFePO4 全电池具有优异的循环稳定性和速率性能。Ce-UiO@PEO 电解质在高性能锂金属电池中的应用潜力巨大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Corrigendum to "Janus hydrogel loaded with a CO2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation" [Food Chemistry 458 (2024) 140271]. Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds. Evaluation of passive samplers as a cost-effective method to predict the impact of wildfire smoke in grapes and wines. Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins. Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1