Gastroprotective effects of Pediococcus acidilactici GKA4 and Lactobacillus brevis GKL93 against ethanol-induced gastric ulcers via regulation of the immune response and gut microbiota in mice.
{"title":"Gastroprotective effects of <i>Pediococcus acidilactici</i> GKA4 and <i>Lactobacillus brevis</i> GKL93 against ethanol-induced gastric ulcers <i>via</i> regulation of the immune response and gut microbiota in mice.","authors":"Yun-En Huang, Sheng-Yi Chen, Tsung-Ju Li, You-Shan Tsai, Chin-Chu Chen, Gow-Chin Yen","doi":"10.1039/d4fo04106b","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive alcohol consumption is a significant pathogenic factor involved in the initiation of noninfectious gastric ulcers. Probiotics based on a specific strain can mitigate gastric damage. However, the protective effects of <i>Pediococcus acidilactici</i> (GKA4) and <i>Lactobacillus brevis</i> (GKL93) against alcohol-induced gastric mucosal damage remain unclear. Hence, the gastroprotective effects of these probiotic strains were investigated in BALB/c mice with gastric mucosa damage induced by absolute alcohol. The results revealed that preadministration of GKA4 and GKL93 increased the expression of antioxidative enzymes (SOD, catalase, GPx), anti-inflammatory cytokines (IL-4 and IL-10), and heat shock protein genes (HSP70 and HSP90) and decreased the expression of apoptosis-related genes (Bax, cytochrome c, and caspase-3), MDA, and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). Mechanistically, GKA4 and GKL93 increased the relative abundance of beneficial flora (<i>Coriobacteriia</i>, <i>Lachnospiraceae_NK4A136_group</i>, <i>Roseburia</i>, <i>f__Oscillospiraceae unclassified</i>, <i>Ruminococcus</i>, <i>Adlercreutzia</i>, and <i>[Eubacterium]_xylanophilum_group</i>) that may promote antioxidant and anti-inflammatory effects <i>via</i> upregulation of the expression of proteins in the Nrf2/HO-1 pathway and downregulation of the expression of proteins in the NF-κB/iNOS/COX-2 signaling pathway, subsequently attenuating gastrointestinal permeability and ulcer symptoms. Furthermore, correlation analysis revealed that <i>[Eubacterium]_xylanophilum_group</i> and <i>f_Oscillospiraceae_unclassified</i> were two significant beneficial flora associated with ethanol-induced gastric ulcers after preadministration of GKA4 and GKL93. In summary, the gastroprotective effects of <i>P. acidilactici</i> GKA4 and <i>L. brevis</i> GKL93 against ethanol-induced gastric ulcers in mice include suppressing oxidative- and inflammatory-related pathways and modulation of the gut microbiota. This novel finding highlights the potential of these probiotics as functional materials in preventing alcohol-induced gastric mucosal damage.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo04106b","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive alcohol consumption is a significant pathogenic factor involved in the initiation of noninfectious gastric ulcers. Probiotics based on a specific strain can mitigate gastric damage. However, the protective effects of Pediococcus acidilactici (GKA4) and Lactobacillus brevis (GKL93) against alcohol-induced gastric mucosal damage remain unclear. Hence, the gastroprotective effects of these probiotic strains were investigated in BALB/c mice with gastric mucosa damage induced by absolute alcohol. The results revealed that preadministration of GKA4 and GKL93 increased the expression of antioxidative enzymes (SOD, catalase, GPx), anti-inflammatory cytokines (IL-4 and IL-10), and heat shock protein genes (HSP70 and HSP90) and decreased the expression of apoptosis-related genes (Bax, cytochrome c, and caspase-3), MDA, and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). Mechanistically, GKA4 and GKL93 increased the relative abundance of beneficial flora (Coriobacteriia, Lachnospiraceae_NK4A136_group, Roseburia, f__Oscillospiraceae unclassified, Ruminococcus, Adlercreutzia, and [Eubacterium]_xylanophilum_group) that may promote antioxidant and anti-inflammatory effects via upregulation of the expression of proteins in the Nrf2/HO-1 pathway and downregulation of the expression of proteins in the NF-κB/iNOS/COX-2 signaling pathway, subsequently attenuating gastrointestinal permeability and ulcer symptoms. Furthermore, correlation analysis revealed that [Eubacterium]_xylanophilum_group and f_Oscillospiraceae_unclassified were two significant beneficial flora associated with ethanol-induced gastric ulcers after preadministration of GKA4 and GKL93. In summary, the gastroprotective effects of P. acidilactici GKA4 and L. brevis GKL93 against ethanol-induced gastric ulcers in mice include suppressing oxidative- and inflammatory-related pathways and modulation of the gut microbiota. This novel finding highlights the potential of these probiotics as functional materials in preventing alcohol-induced gastric mucosal damage.
期刊介绍:
Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.