Bibhu Prasad Behera, Hemangini Naik, V Badireenath Konkimalla
{"title":"Peptaloid: A Comprehensive Database for Exploring Peptide Alkaloid.","authors":"Bibhu Prasad Behera, Hemangini Naik, V Badireenath Konkimalla","doi":"10.1021/acs.jcim.4c01667","DOIUrl":null,"url":null,"abstract":"<p><p>Peptaloid is the first dedicated database for peptide alkaloid molecules, a unique class of naturally derived compounds known for their structural diversity and significant biological activities. Despite their promising potential in drug discovery and therapeutic development, research on peptide alkaloids has been limited by the absence of a comprehensive and centralized resource. Fragmented data across various sources have posed a significant challenge, underscoring the need for a specialized database to facilitate more efficient research and application. Peptaloid addresses this critical gap by providing a database with over 161,000 peptide alkaloid entries, each detailed with structural, physicochemical, and pharmacological properties. By leveraging advanced computational tools and machine learning, Peptaloid generates ADMET profiles, aiding in identifying and optimizing therapeutic candidates. Designed for versatility, the database supports various applications beyond drug discovery, including ecology and material sciences. Peptaloid (as a specialized database for peptide alkaloids) will play a crucial role in innovation and collaboration across scientific disciplines. Peptaloid is accessible at https://peptaloid.niser.ac.in.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"8387-8395"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01667","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Peptaloid is the first dedicated database for peptide alkaloid molecules, a unique class of naturally derived compounds known for their structural diversity and significant biological activities. Despite their promising potential in drug discovery and therapeutic development, research on peptide alkaloids has been limited by the absence of a comprehensive and centralized resource. Fragmented data across various sources have posed a significant challenge, underscoring the need for a specialized database to facilitate more efficient research and application. Peptaloid addresses this critical gap by providing a database with over 161,000 peptide alkaloid entries, each detailed with structural, physicochemical, and pharmacological properties. By leveraging advanced computational tools and machine learning, Peptaloid generates ADMET profiles, aiding in identifying and optimizing therapeutic candidates. Designed for versatility, the database supports various applications beyond drug discovery, including ecology and material sciences. Peptaloid (as a specialized database for peptide alkaloids) will play a crucial role in innovation and collaboration across scientific disciplines. Peptaloid is accessible at https://peptaloid.niser.ac.in.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.