Hyewon Jung, Mi-Lang Kyun, Ji-In Kwon, Jeongha Kim, Ju-Kang Kim, Daeui Park, Yu Bin Lee, Kyoung-Sik Moon
{"title":"Amplified response of drug-induced liver fibrosis <i>via</i> immune cell co-culture in a 3D <i>in vitro</i> hepatic fibrosis model.","authors":"Hyewon Jung, Mi-Lang Kyun, Ji-In Kwon, Jeongha Kim, Ju-Kang Kim, Daeui Park, Yu Bin Lee, Kyoung-Sik Moon","doi":"10.1039/d4bm00874j","DOIUrl":null,"url":null,"abstract":"<p><p>Liver fibrosis, a critical consequence of chronic liver diseases, is characterized by excessive extracellular matrix (ECM) deposition driven by inflammation. This process involves complex interactions among hepatocytes, hepatic stellate cells (HSCs), and Kupffer cells, the liver's resident macrophages. Kupffer cells are essential in initiating fibrosis through the release of pro-inflammatory cytokines that activate HSCs. Although various <i>in vitro</i> liver fibrosis models have been developed, there is a lack of models that include the immune environment of the liver to clarify the influence of immune cells on the progression of liver fibrosis. We developed an <i>in vitro</i> liver fibrosis model by co-culturing hepatocytes (HepaRG), a hepatic stellate cell line (LX-2), and macrophages (differentiated THP-1). The effects of liver fibrosis inducers, transforming growth factor-beta1 (TGF-β1) and methotrexate (MTX), on the inflammatory response and stellate cell activation were evaluated in this triple co-culture model. A triple co-culture condition was developed as a 3D <i>in vitro</i> model using gelatin methacrylate (GelMA), offering a more biomimetic environment and achieving liver fibrosis <i>via</i> immune cell activation associated ECM deposition. In this study, the developed triple co-culture model has the potential to elucidate cell progression roles in liver fibrosis and can be applied in drug screening and toxicity assessments targeting liver fibrosis.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm00874j","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Liver fibrosis, a critical consequence of chronic liver diseases, is characterized by excessive extracellular matrix (ECM) deposition driven by inflammation. This process involves complex interactions among hepatocytes, hepatic stellate cells (HSCs), and Kupffer cells, the liver's resident macrophages. Kupffer cells are essential in initiating fibrosis through the release of pro-inflammatory cytokines that activate HSCs. Although various in vitro liver fibrosis models have been developed, there is a lack of models that include the immune environment of the liver to clarify the influence of immune cells on the progression of liver fibrosis. We developed an in vitro liver fibrosis model by co-culturing hepatocytes (HepaRG), a hepatic stellate cell line (LX-2), and macrophages (differentiated THP-1). The effects of liver fibrosis inducers, transforming growth factor-beta1 (TGF-β1) and methotrexate (MTX), on the inflammatory response and stellate cell activation were evaluated in this triple co-culture model. A triple co-culture condition was developed as a 3D in vitro model using gelatin methacrylate (GelMA), offering a more biomimetic environment and achieving liver fibrosis via immune cell activation associated ECM deposition. In this study, the developed triple co-culture model has the potential to elucidate cell progression roles in liver fibrosis and can be applied in drug screening and toxicity assessments targeting liver fibrosis.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.