Noah Eckman, Abigail K Grosskopf, Grace Jiang, Krutarth Kamani, Michelle S Huang, Brigitte Schmittlein, Sarah C Heilshorn, Simon Rogers, Eric A Appel
{"title":"Crosslink strength governs yielding behavior in dynamically crosslinked hydrogels.","authors":"Noah Eckman, Abigail K Grosskopf, Grace Jiang, Krutarth Kamani, Michelle S Huang, Brigitte Schmittlein, Sarah C Heilshorn, Simon Rogers, Eric A Appel","doi":"10.1039/d4bm01323a","DOIUrl":null,"url":null,"abstract":"<p><p>Yielding of dynamically crosslinked hydrogels, or the transition between a solid-like and liquid-like state, allows facile injection and utility in translational biomedical applications including delivery of therapeutic cells. Unfortunately, the time-varying nature of the transition is not well understood, nor are there design rules for understanding the effects of yielding on encapsulated cells. Here, we unveil underlying molecular mechanisms governing the yielding transition of dynamically crosslinked gels currently being researched for use in cell therapy. We demonstrate through nonlinear rheological characterization that the network dynamics of the dynamic hydrogels dictate the speed and character of their yielding transition. Rheological testing of these materials reveals unexpected elastic strain stiffening during yielding, as well as characterization of the rapidity of the yielding transition. A slower yielding speed explains enhanced protection of directly injected cells from shear forces, highlighting the importance of mechanical characterization of all phases of yield-stress biomaterials.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01323a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Yielding of dynamically crosslinked hydrogels, or the transition between a solid-like and liquid-like state, allows facile injection and utility in translational biomedical applications including delivery of therapeutic cells. Unfortunately, the time-varying nature of the transition is not well understood, nor are there design rules for understanding the effects of yielding on encapsulated cells. Here, we unveil underlying molecular mechanisms governing the yielding transition of dynamically crosslinked gels currently being researched for use in cell therapy. We demonstrate through nonlinear rheological characterization that the network dynamics of the dynamic hydrogels dictate the speed and character of their yielding transition. Rheological testing of these materials reveals unexpected elastic strain stiffening during yielding, as well as characterization of the rapidity of the yielding transition. A slower yielding speed explains enhanced protection of directly injected cells from shear forces, highlighting the importance of mechanical characterization of all phases of yield-stress biomaterials.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.