Grace Q Gong, Glenn Robert Masson, Woo-Jeong Jeong Lee, James Mj Dickson, Jackie D Kendall, Manoj K Rathinaswamy, Christina M Buchanan, Martin Middleditch, Brady Owen, Julie A Spicer, Gordon W Rewcastle, William A Denny, John E Burke, Peter R Shepherd, Roger L Williams, Jack U Flanagan
{"title":"ATP-competitive inhibitors of PI3K enzymes demonstrate an isoform selective dual action by controlling membrane binding.","authors":"Grace Q Gong, Glenn Robert Masson, Woo-Jeong Jeong Lee, James Mj Dickson, Jackie D Kendall, Manoj K Rathinaswamy, Christina M Buchanan, Martin Middleditch, Brady Owen, Julie A Spicer, Gordon W Rewcastle, William A Denny, John E Burke, Peter R Shepherd, Roger L Williams, Jack U Flanagan","doi":"10.1042/BCJ20240479","DOIUrl":null,"url":null,"abstract":"<p><p>PI3Kα, consisting of the p110α isoform of the catalytic subunit of PI 3-kinase (encoded by PIK3CA) and the p85α regulatory subunit (encoded by PI3KR1) is activated by growth factor receptors. The identification of common oncogenic mutations in PIK3CA has driven the development of many inhibitors that bind to the ATP-binding site in the p110α subunit. Upon activation, PI3Kα undergoes conformational changes that promote its membrane interaction and catalytic activity, yet the effects of ATP-site directed inhibitors on the PI3Kα membrane interaction are unknown. Using FRET and Biolayer Interferometry assays, we show that a class of ATP-site directed inhibitors represented by GSK2126458 block the growth factor activated PI3KαWT membrane interaction, an activity dependent on the ligand forming specific ATP-site interactions. The membrane interaction for hot spot oncogenic mutations that bypass normal p85α regulatory mechanisms was insensitive to GSK2126458, while GSK2126458 could regulate mutations found outside of these hot spot regions. Our data show that the effect of GSK126458 on the membrane interaction requires the enzyme to revert from its growth factor activated state to a basal state. We find that an ATP substrate analogue can increase the wild type PI3Kα membrane interaction, uncovering a substrate based regulatory event that can be mimicked by different inhibitor chemotypes. Our findings, together with the discovery of small molecule allosteric activators of PI3Kα illustrate that PI3Kα membrane interactions can be modulated by factors related to ligand binding both within the ATP site and at allosteric sites.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20240479","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PI3Kα, consisting of the p110α isoform of the catalytic subunit of PI 3-kinase (encoded by PIK3CA) and the p85α regulatory subunit (encoded by PI3KR1) is activated by growth factor receptors. The identification of common oncogenic mutations in PIK3CA has driven the development of many inhibitors that bind to the ATP-binding site in the p110α subunit. Upon activation, PI3Kα undergoes conformational changes that promote its membrane interaction and catalytic activity, yet the effects of ATP-site directed inhibitors on the PI3Kα membrane interaction are unknown. Using FRET and Biolayer Interferometry assays, we show that a class of ATP-site directed inhibitors represented by GSK2126458 block the growth factor activated PI3KαWT membrane interaction, an activity dependent on the ligand forming specific ATP-site interactions. The membrane interaction for hot spot oncogenic mutations that bypass normal p85α regulatory mechanisms was insensitive to GSK2126458, while GSK2126458 could regulate mutations found outside of these hot spot regions. Our data show that the effect of GSK126458 on the membrane interaction requires the enzyme to revert from its growth factor activated state to a basal state. We find that an ATP substrate analogue can increase the wild type PI3Kα membrane interaction, uncovering a substrate based regulatory event that can be mimicked by different inhibitor chemotypes. Our findings, together with the discovery of small molecule allosteric activators of PI3Kα illustrate that PI3Kα membrane interactions can be modulated by factors related to ligand binding both within the ATP site and at allosteric sites.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling