{"title":"Design, Synthesis, and Anti-Inflammatory Activity Evaluation of Novel Indanone Derivatives for the Treatment of Vascular Dementia.","authors":"Xue-Song Tang, Lin-Yu He, Sheng-Nan Li, Wen-Cheng Zhang, Ze-Yu Wu, Ai-Ling Hui","doi":"10.1002/cbdv.202401931","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular dementia (VaD) is a neurodegenerative disease resulting from cerebral vascular obstruction, leading to cognitive impairment, and currently lacks effective treatment options. Due to its complex pathogenesis, multi-target drug design (MTDLs) strategies are considered among the most promising therapeutic approaches. In this study, we designed and synthesized a series of novel indanone derivatives targeting targets related to vascular health and dementia. The results indicated that compound C5 exhibited excellent acetylcholinesterase inhibitory activity (IC50 = 1.16 ± 0.41 μM) and anti-platelet aggregation activity (IC50 = 4.92 ± 0.10 μM) within ranges of 0.1-1000 μM and 0.03-300 μM, respectively, possibly mediated by molecular docking interactions. Furthermore, compound C5 demonstrated protective effects on cells at concentrations ≤50 μM, significantly reducing the release of nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) in a concentration-dependent manner, showcasing its potent neuroinflammatory inhibitory effects. Anti-inflammatory therapies are regarded as effective strategies for treating VaD. Therefore, compound C5 holds promise as a novel candidate drug for further investigation into the treatment of vascular dementia.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202401931","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vascular dementia (VaD) is a neurodegenerative disease resulting from cerebral vascular obstruction, leading to cognitive impairment, and currently lacks effective treatment options. Due to its complex pathogenesis, multi-target drug design (MTDLs) strategies are considered among the most promising therapeutic approaches. In this study, we designed and synthesized a series of novel indanone derivatives targeting targets related to vascular health and dementia. The results indicated that compound C5 exhibited excellent acetylcholinesterase inhibitory activity (IC50 = 1.16 ± 0.41 μM) and anti-platelet aggregation activity (IC50 = 4.92 ± 0.10 μM) within ranges of 0.1-1000 μM and 0.03-300 μM, respectively, possibly mediated by molecular docking interactions. Furthermore, compound C5 demonstrated protective effects on cells at concentrations ≤50 μM, significantly reducing the release of nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) in a concentration-dependent manner, showcasing its potent neuroinflammatory inhibitory effects. Anti-inflammatory therapies are regarded as effective strategies for treating VaD. Therefore, compound C5 holds promise as a novel candidate drug for further investigation into the treatment of vascular dementia.
期刊介绍:
Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level.
Since 2017, Chemistry & Biodiversity is published in an online-only format.