Jianmin Lin, Runjing He, Qunshu Tang, Lei Zhang, Wen Xu
{"title":"Measurement of ocean currents by seafloor distributed optical-fiber acoustic sensing.","authors":"Jianmin Lin, Runjing He, Qunshu Tang, Lei Zhang, Wen Xu","doi":"10.1121/10.0034237","DOIUrl":null,"url":null,"abstract":"<p><p>Ocean current measurements play a crucial role in aiding our understanding of ocean dynamics and circulation systems. Traditional methods, such as drifters and ocean buoys, are sparsely distributed and of limited effectiveness due to the nature of the marine environment and high operating expenses. Distributed acoustic sensing (DAS) is an emerging technology using submarine optical-fiber (OF) cables as dense seismo-acoustic arrays, offering a new perspective for ocean observations. Here, in situ observations of ocean surface gravity waves (OSGWs) and ocean currents by DAS were made along a pre-existing 33.6 km seafloor OF cable. The average current velocity and water depth along the cable were determined from observed OSGW-induced seafloor noise (0.05-0.2 Hz) using ambient-noise interferometry and frequency-domain beamforming. Variations in current velocity were derived at high spatiotemporal resolution using the frequency-domain waveform-stretching method. The inverted current velocity was verified by nearby ocean buoy observations and forecasting results. The observations demonstrate the effectiveness of DAS-instrumented OF cables in monitoring ocean currents.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 5","pages":"2974-2981"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034237","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean current measurements play a crucial role in aiding our understanding of ocean dynamics and circulation systems. Traditional methods, such as drifters and ocean buoys, are sparsely distributed and of limited effectiveness due to the nature of the marine environment and high operating expenses. Distributed acoustic sensing (DAS) is an emerging technology using submarine optical-fiber (OF) cables as dense seismo-acoustic arrays, offering a new perspective for ocean observations. Here, in situ observations of ocean surface gravity waves (OSGWs) and ocean currents by DAS were made along a pre-existing 33.6 km seafloor OF cable. The average current velocity and water depth along the cable were determined from observed OSGW-induced seafloor noise (0.05-0.2 Hz) using ambient-noise interferometry and frequency-domain beamforming. Variations in current velocity were derived at high spatiotemporal resolution using the frequency-domain waveform-stretching method. The inverted current velocity was verified by nearby ocean buoy observations and forecasting results. The observations demonstrate the effectiveness of DAS-instrumented OF cables in monitoring ocean currents.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.