Oliver Pennington , Sebastián Espinel Ríos , Mauro Torres Sebastian , Alan Dickson , Dongda Zhang
{"title":"A multiscale hybrid modelling methodology for cell cultures enabled by enzyme-constrained dynamic metabolic flux analysis under uncertainty","authors":"Oliver Pennington , Sebastián Espinel Ríos , Mauro Torres Sebastian , Alan Dickson , Dongda Zhang","doi":"10.1016/j.ymben.2024.10.013","DOIUrl":null,"url":null,"abstract":"<div><div>Mammalian cell cultures make a significant contribution to the pharmaceutical industry. They produce many of the biopharmaceuticals obtaining FDA-approval each year. Motivated by quality-by-design principles, various modelling methodologies are frequently trialled to gain insight into these bioprocesses. However, these systems are highly complex and uncertain, involving dynamics at different scales, both in time and space, making them challenging to model in a comprehensive and fully mechanistic manner. This study develops a machine-learning-supported multiscale modelling framework of cell cultures, linking the macroscale bioprocess dynamics to the microscale metabolic flux distribution. As a relevant biopharmaceutical case study, we consider the production of Trastuzumab by Chinese Hamster Ovary (CHO) cells in batch. A macroscale hybrid model is constructed by integrating macro-kinetic and machine-learning approaches. Enzyme-constrained Dynamic Metabolic Flux Analysis (ecDMFA) is adopted to calculate flux distributions based on the dynamic predictions of the hybrid model. Uncertainty estimation of the multiscale model is conducted through bootstrapping. Judging from experimental data, our hybrid model can reduce the modelling error of the macroscale dynamics to 8.0%; a 70% reduction from the purely mechanistic model. In addition, the predicted dynamic flux distribution aligns with observations seen in literature, highlighting important metabolic changes throughout the process. Model uncertainty is maintained at a low level, demonstrating the trustworthiness of the predictions. Overall, our comprehensive modelling framework has the potential to facilitate the development of digital twins in the biopharmaceutical industry.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"86 ","pages":"Pages 274-287"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624001411","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mammalian cell cultures make a significant contribution to the pharmaceutical industry. They produce many of the biopharmaceuticals obtaining FDA-approval each year. Motivated by quality-by-design principles, various modelling methodologies are frequently trialled to gain insight into these bioprocesses. However, these systems are highly complex and uncertain, involving dynamics at different scales, both in time and space, making them challenging to model in a comprehensive and fully mechanistic manner. This study develops a machine-learning-supported multiscale modelling framework of cell cultures, linking the macroscale bioprocess dynamics to the microscale metabolic flux distribution. As a relevant biopharmaceutical case study, we consider the production of Trastuzumab by Chinese Hamster Ovary (CHO) cells in batch. A macroscale hybrid model is constructed by integrating macro-kinetic and machine-learning approaches. Enzyme-constrained Dynamic Metabolic Flux Analysis (ecDMFA) is adopted to calculate flux distributions based on the dynamic predictions of the hybrid model. Uncertainty estimation of the multiscale model is conducted through bootstrapping. Judging from experimental data, our hybrid model can reduce the modelling error of the macroscale dynamics to 8.0%; a 70% reduction from the purely mechanistic model. In addition, the predicted dynamic flux distribution aligns with observations seen in literature, highlighting important metabolic changes throughout the process. Model uncertainty is maintained at a low level, demonstrating the trustworthiness of the predictions. Overall, our comprehensive modelling framework has the potential to facilitate the development of digital twins in the biopharmaceutical industry.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.