Lukas Hirsch, Yu Huang, Hernan A Makse, Danny F Martinez, Mary Hughes, Sarah Eskreis-Winkler, Katja Pinker, Elizabeth A Morris, Lucas C Parra, Elizabeth J Sutton
{"title":"Early Detection of Breast Cancer in MRI Using AI.","authors":"Lukas Hirsch, Yu Huang, Hernan A Makse, Danny F Martinez, Mary Hughes, Sarah Eskreis-Winkler, Katja Pinker, Elizabeth A Morris, Lucas C Parra, Elizabeth J Sutton","doi":"10.1016/j.acra.2024.10.014","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>To develop and evaluate an AI algorithm that detects breast cancer in MRI scans up to one year before radiologists typically identify it, potentially enhancing early detection in high-risk women.</p><p><strong>Materials and methods: </strong>A convolutional neural network (CNN) AI model, pre-trained on breast MRI data, was fine-tuned using a retrospective dataset of 3029 MRI scans from 910 patients. These contained 115 cancers that were diagnosed within one year of a negative MRI. The model aimed to identify these cancers, with the goal of predicting cancer development up to one year in advance. The network was fine-tuned and tested with 10-fold cross-validation. Mean age of patients was 52 years (range, 18-88 years), with average follow-up of 4.3 years (range 1-12 years).</p><p><strong>Results: </strong>The AI detected cancers one year earlier with an area under the ROC curve of 0.72 (0.67-0.76). Retrospective analysis by a radiologist of the top 10% highest risk MRIs as ranked by the AI could have increased early detection by up to 30%. (35/115, CI:22.2-39.7%, 30% sensitivity). A radiologist identified a visual correlate to biopsy-proven cancers in 83 of prior-year MRIs (83/115, CI: 62.1-79.4%). The AI algorithm identified the anatomic region where cancer would be detected in 66 cases (66/115, CI:47.8-66.5%); with both agreeing in 54 cases (54/115, CI:%37.5-56.4%).</p><p><strong>Conclusion: </strong>This novel AI-aided re-evaluation of \"benign\" breasts shows promise for improving early breast cancer detection with MRI. As datasets grow and image quality improves, this approach is expected to become even more impactful.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.10.014","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and objectives: To develop and evaluate an AI algorithm that detects breast cancer in MRI scans up to one year before radiologists typically identify it, potentially enhancing early detection in high-risk women.
Materials and methods: A convolutional neural network (CNN) AI model, pre-trained on breast MRI data, was fine-tuned using a retrospective dataset of 3029 MRI scans from 910 patients. These contained 115 cancers that were diagnosed within one year of a negative MRI. The model aimed to identify these cancers, with the goal of predicting cancer development up to one year in advance. The network was fine-tuned and tested with 10-fold cross-validation. Mean age of patients was 52 years (range, 18-88 years), with average follow-up of 4.3 years (range 1-12 years).
Results: The AI detected cancers one year earlier with an area under the ROC curve of 0.72 (0.67-0.76). Retrospective analysis by a radiologist of the top 10% highest risk MRIs as ranked by the AI could have increased early detection by up to 30%. (35/115, CI:22.2-39.7%, 30% sensitivity). A radiologist identified a visual correlate to biopsy-proven cancers in 83 of prior-year MRIs (83/115, CI: 62.1-79.4%). The AI algorithm identified the anatomic region where cancer would be detected in 66 cases (66/115, CI:47.8-66.5%); with both agreeing in 54 cases (54/115, CI:%37.5-56.4%).
Conclusion: This novel AI-aided re-evaluation of "benign" breasts shows promise for improving early breast cancer detection with MRI. As datasets grow and image quality improves, this approach is expected to become even more impactful.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.