Milk Exosome-Glow Nanosystem for Cancer Cellular and Tissue Bioimaging.

Chemical & Biomedical Imaging Pub Date : 2024-08-07 eCollection Date: 2024-10-28 DOI:10.1021/cbmi.4c00040
Nycol M Cotto, Neeraj Chauhan, Benilde Adriano, Deepak S Chauhan, Marco Cabrera, Subhash C Chauhan, Murali M Yallapu
{"title":"Milk Exosome-Glow Nanosystem for Cancer Cellular and Tissue Bioimaging.","authors":"Nycol M Cotto, Neeraj Chauhan, Benilde Adriano, Deepak S Chauhan, Marco Cabrera, Subhash C Chauhan, Murali M Yallapu","doi":"10.1021/cbmi.4c00040","DOIUrl":null,"url":null,"abstract":"<p><p>Milk-derived exosomes are widely used for diagnosis, delivery, imaging, and theranostic applications. Near-Infrared (NIR) based fluorescence bioimaging is an attractive and safer technique that is used for clinical applications. However, almost all NIR imaging agents tend to have poor photostability, short half-life, nonspecific protein binding, and concentration-dependent aggregation(s). Therefore, there is an unmet clinical need to develop newer and safer modalities to package and deliver NIR imaging agents. Bovine milk exosomes are natural, biocompatible, safe, and efficient nanocarriers that facilitate the delivery of micro- and macromolecules. Herein, we developed an exosome-based NIR dye loaded nanoimaging formulation that offers improved solubility and photostability of NIR dye. Following the acetic acid based extracellular vesicle (EV) treatment method, we extracted the bovine milk exosomes from a variety of pasteurized grade milk. The EVs were screened for their physicochemical properties such as particle size and concentration and zeta potential. The stability of these exosomes was also determined under different conditions, including storage temperatures, pH, and salt concentrations. Next, indocyanine green, a model NIR dye was loaded into these exosomes (Exo-Glow) via a sonication method and further assessed for their improved fluorescence intensity and photostability using an IVIS imaging system. Initial screening suggested that size of the selected bovine milk exosomes was ∼100-135 nm with an average particle concentration of 5.8 × 10<sup>2</sup> particles/mL. Exo-Glow further demonstrated higher fluorescence intensity in cancer cells and tissues when compared to free dye. These results showed that Exo-Glow has the potential to serve as a safer NIR imaging tool for cancer cells/tissues.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 10","pages":"711-720"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522989/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbmi.4c00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Milk-derived exosomes are widely used for diagnosis, delivery, imaging, and theranostic applications. Near-Infrared (NIR) based fluorescence bioimaging is an attractive and safer technique that is used for clinical applications. However, almost all NIR imaging agents tend to have poor photostability, short half-life, nonspecific protein binding, and concentration-dependent aggregation(s). Therefore, there is an unmet clinical need to develop newer and safer modalities to package and deliver NIR imaging agents. Bovine milk exosomes are natural, biocompatible, safe, and efficient nanocarriers that facilitate the delivery of micro- and macromolecules. Herein, we developed an exosome-based NIR dye loaded nanoimaging formulation that offers improved solubility and photostability of NIR dye. Following the acetic acid based extracellular vesicle (EV) treatment method, we extracted the bovine milk exosomes from a variety of pasteurized grade milk. The EVs were screened for their physicochemical properties such as particle size and concentration and zeta potential. The stability of these exosomes was also determined under different conditions, including storage temperatures, pH, and salt concentrations. Next, indocyanine green, a model NIR dye was loaded into these exosomes (Exo-Glow) via a sonication method and further assessed for their improved fluorescence intensity and photostability using an IVIS imaging system. Initial screening suggested that size of the selected bovine milk exosomes was ∼100-135 nm with an average particle concentration of 5.8 × 102 particles/mL. Exo-Glow further demonstrated higher fluorescence intensity in cancer cells and tissues when compared to free dye. These results showed that Exo-Glow has the potential to serve as a safer NIR imaging tool for cancer cells/tissues.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于癌症细胞和组织生物成像的牛奶外泌体-光纳米系统。
源自牛奶的外泌体被广泛用于诊断、递送、成像和治疗应用。基于近红外(NIR)的荧光生物成像是一种有吸引力且更安全的技术,可用于临床应用。然而,几乎所有的近红外成像剂都存在光稳定性差、半衰期短、非特异性蛋白质结合和浓度依赖性聚集等问题。因此,开发更新、更安全的近红外成像剂包装和递送方式的临床需求尚未得到满足。牛乳外泌体是一种天然、生物相容性好、安全且高效的纳米载体,可促进微分子和大分子的递送。在此,我们开发了一种基于外泌体的近红外染料纳米成像制剂,该制剂具有更好的近红外染料溶解性和光稳定性。我们采用基于醋酸的细胞外囊泡(EV)处理方法,从各种巴氏杀菌级牛奶中提取了牛乳外泌体。我们筛选了这些外泌体的理化性质,如粒径、浓度和 zeta 电位。我们还测定了这些外泌体在不同条件下的稳定性,包括储存温度、pH 值和盐浓度。接着,通过超声法将吲哚菁绿这种近红外染料模型载入这些外泌体(Exo-Glow),并使用 IVIS 成像系统进一步评估它们的荧光强度和光稳定性。初步筛选表明,所选牛乳外泌体的大小为 100-135 nm,平均颗粒浓度为 5.8 × 102 颗粒/毫升。与游离染料相比,Exo-Glow 在癌细胞和组织中的荧光强度更高。这些结果表明,Exo-Glow 有潜力成为癌细胞/组织更安全的近红外成像工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
期刊最新文献
Issue Editorial Masthead Issue Publication Information Issue Publication Information Issue Editorial Masthead Laser-Treated Screen-Printed Carbon Electrodes for Electrochemiluminescence imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1