Wearable EEG-Based Brain-Computer Interface for Stress Monitoring.

IF 1.6 Q3 CLINICAL NEUROLOGY NeuroSci Pub Date : 2024-10-08 eCollection Date: 2024-12-01 DOI:10.3390/neurosci5040031
Brian Premchand, Liyuan Liang, Kok Soon Phua, Zhuo Zhang, Chuanchu Wang, Ling Guo, Jennifer Ang, Juliana Koh, Xueyi Yong, Kai Keng Ang
{"title":"Wearable EEG-Based Brain-Computer Interface for Stress Monitoring.","authors":"Brian Premchand, Liyuan Liang, Kok Soon Phua, Zhuo Zhang, Chuanchu Wang, Ling Guo, Jennifer Ang, Juliana Koh, Xueyi Yong, Kai Keng Ang","doi":"10.3390/neurosci5040031","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting stress is important for improving human health and potential, because moderate levels of stress may motivate people towards better performance at cognitive tasks, while chronic stress exposure causes impaired performance and health risks. We propose a Brain-Computer Interface (BCI) system to detect stress in the context of high-pressure work environments. The BCI system includes an electroencephalogram (EEG) headband with dry electrodes and an electrocardiogram (ECG) chest belt. We collected EEG and ECG data from 40 participants during two stressful cognitive tasks: the Cognitive Vigilance Task (CVT), and the Multi-Modal Integration Task (MMIT) we designed. We also recorded self-reported stress levels using the Dundee Stress State Questionnaire (DSSQ). The DSSQ results indicated that performing the MMIT led to significant increases in stress, while performing the CVT did not. Subsequently, we trained two different models to classify stress from non-stress states, one using EEG features, and the other using heart rate variability (HRV) features extracted from the ECG. Our EEG-based model achieved an overall accuracy of 81.0% for MMIT and 77.2% for CVT. However, our HRV-based model only achieved 62.1% accuracy for CVT and 56.0% for MMIT. We conclude that EEG is an effective predictor of stress in the context of stressful cognitive tasks. Our proposed BCI system shows promise in evaluating mental stress in high-pressure work environments, particularly when utilizing an EEG-based BCI.</p>","PeriodicalId":74294,"journal":{"name":"NeuroSci","volume":"5 4","pages":"407-428"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503304/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroSci","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neurosci5040031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting stress is important for improving human health and potential, because moderate levels of stress may motivate people towards better performance at cognitive tasks, while chronic stress exposure causes impaired performance and health risks. We propose a Brain-Computer Interface (BCI) system to detect stress in the context of high-pressure work environments. The BCI system includes an electroencephalogram (EEG) headband with dry electrodes and an electrocardiogram (ECG) chest belt. We collected EEG and ECG data from 40 participants during two stressful cognitive tasks: the Cognitive Vigilance Task (CVT), and the Multi-Modal Integration Task (MMIT) we designed. We also recorded self-reported stress levels using the Dundee Stress State Questionnaire (DSSQ). The DSSQ results indicated that performing the MMIT led to significant increases in stress, while performing the CVT did not. Subsequently, we trained two different models to classify stress from non-stress states, one using EEG features, and the other using heart rate variability (HRV) features extracted from the ECG. Our EEG-based model achieved an overall accuracy of 81.0% for MMIT and 77.2% for CVT. However, our HRV-based model only achieved 62.1% accuracy for CVT and 56.0% for MMIT. We conclude that EEG is an effective predictor of stress in the context of stressful cognitive tasks. Our proposed BCI system shows promise in evaluating mental stress in high-pressure work environments, particularly when utilizing an EEG-based BCI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电图的可穿戴式脑机接口,用于压力监测。
检测压力对于提高人类健康和潜能非常重要,因为适度的压力可以激励人们在认知任务中取得更好的成绩,而长期暴露在压力下则会导致成绩受损并带来健康风险。我们提出了一种脑机接口(BCI)系统,用于检测高压工作环境下的压力。该 BCI 系统包括一个带有干电极的脑电图(EEG)头带和一个心电图(ECG)胸带。我们收集了 40 名参与者在完成两项压力认知任务时的脑电图和心电图数据:认知警觉任务(CVT)和我们设计的多模式整合任务(MMIT)。我们还使用邓迪压力状态问卷(DSSQ)记录了自我报告的压力水平。DSSQ 结果表明,执行 MMIT 会导致压力显著增加,而执行 CVT 则不会。随后,我们训练了两个不同的模型来对压力和非压力状态进行分类,一个使用脑电图特征,另一个使用从心电图中提取的心率变异性(HRV)特征。我们基于脑电图的模型对 MMIT 的总体准确率达到 81.0%,对 CVT 的准确率达到 77.2%。然而,我们基于心率变异的模型对 CVT 的准确率仅为 62.1%,对 MMIT 的准确率为 56.0%。我们的结论是,在压力认知任务中,脑电图是压力的有效预测指标。我们提出的 BCI 系统有望评估高压工作环境中的精神压力,尤其是在使用基于脑电图的 BCI 时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Exploring Neuroprotection against Radiation-Induced Brain Injury: A Review of Key Compounds. Resting-State Functional Connectivity Predicts Attention Problems in Children: Evidence from the ABCD Study. Trehalose: Neuroprotective Effects and Mechanisms-An Updated Review. Discontinuation of Cerebro-Spinal Fluid (CSF) Drainage in Acute Hydrocephalus: A Prospective Cohort Study and Exploratory Data Analysis. Wearable EEG-Based Brain-Computer Interface for Stress Monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1