{"title":"Dose and time dependent morphodynamic changes in the ovary of nano-nickel treated rats A SEM study","authors":"Meenu Singh, Yeshvandra Verma, SV S. Rana","doi":"10.1016/j.tice.2024.102598","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>Present study demonstrates dose and time dependent effects of NiONPs (<30 nm) on the ovaries of Wistar rat.</div></div><div><h3>Methods</h3><div>Female rats were gavaged NiONPs or NiOMPs (5 mg/kg b.w.) for 24 h, 15 days and 30 days, euthanized and ovaries thus removed were analyzed for nickel bioaconcentration and processed for scanning electron microscopy. Serum samples were analyzed to compare the effects of nickel nano & microparticles on progesterone and estradiol values.</div></div><div><h3>Results</h3><div>Results confirmed the bioaccumulation of Ni in ovarian tissue. Its concentration was higher in NiONPs treated rats than NiOMPs treated rats. Progesterone level increased whereas estradiol values decreased in NiONPs and NiOMPs treated rats. SEM results also exhibited dose dependent effects on the morphology of corpoluteal complex. The structural changes varied from formation of blebs to distorted microvilli and germinal epithelium.</div></div><div><h3>Conclusion</h3><div>It is hypothesized that NiONPs/NiOMPs are biodegraded into smaller fragments that conjugate with amino acids and or alter downstream signaling pathways, generate ROS and modulate protein structure activity relationships. Finally, these processes manifest into morphological alterations in the ovary. Biopersistence of nickel in female reproductive system may compromise with fertility and reproductive performance of exposed population.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816624002994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Present study demonstrates dose and time dependent effects of NiONPs (<30 nm) on the ovaries of Wistar rat.
Methods
Female rats were gavaged NiONPs or NiOMPs (5 mg/kg b.w.) for 24 h, 15 days and 30 days, euthanized and ovaries thus removed were analyzed for nickel bioaconcentration and processed for scanning electron microscopy. Serum samples were analyzed to compare the effects of nickel nano & microparticles on progesterone and estradiol values.
Results
Results confirmed the bioaccumulation of Ni in ovarian tissue. Its concentration was higher in NiONPs treated rats than NiOMPs treated rats. Progesterone level increased whereas estradiol values decreased in NiONPs and NiOMPs treated rats. SEM results also exhibited dose dependent effects on the morphology of corpoluteal complex. The structural changes varied from formation of blebs to distorted microvilli and germinal epithelium.
Conclusion
It is hypothesized that NiONPs/NiOMPs are biodegraded into smaller fragments that conjugate with amino acids and or alter downstream signaling pathways, generate ROS and modulate protein structure activity relationships. Finally, these processes manifest into morphological alterations in the ovary. Biopersistence of nickel in female reproductive system may compromise with fertility and reproductive performance of exposed population.