Technology roadmap toward the completion of whole-brain architecture with BRA-driven development

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-17 DOI:10.1016/j.cogsys.2024.101300
Hiroshi Yamakawa , Yoshimasa Tawatsuji , Yuta Ashihara , Ayako Fukawa , Naoya Arakawa , Koichi Takahashi , Yutaka Matsuo
{"title":"Technology roadmap toward the completion of whole-brain architecture with BRA-driven development","authors":"Hiroshi Yamakawa ,&nbsp;Yoshimasa Tawatsuji ,&nbsp;Yuta Ashihara ,&nbsp;Ayako Fukawa ,&nbsp;Naoya Arakawa ,&nbsp;Koichi Takahashi ,&nbsp;Yutaka Matsuo","doi":"10.1016/j.cogsys.2024.101300","DOIUrl":null,"url":null,"abstract":"<div><div>The development of brain-morphic software holds significant promise for creating artificial general intelligence that exhibits high affinity and interpretability for humans and also offers substantial benefits for medical applications. To facilitate this, creating Brain Reference Architecture (BRA) data, serving as a design specification for brain-morphic software is imperative. BRA-driven development, which utilizes Brain Information Flow (BIF) diagrams based on mesoscale brain anatomy and Hypothetical Component Diagrams (HCD) for corresponding computational functionalities, has been proposed to address this need. This methodology formalizes identifying possible functional structures by leveraging existing, albeit insufficient, neuroscientific knowledge. However, applying this methodology across the entire brain, thereby creating a Whole Brain Reference Architecture (WBRA), represents a significant research and development challenge due to its scale and complexity. Technology roadmaps have been introduced as a strategic tool to guide discussion, management, and distribution of resources within such expansive research and development activities. These roadmaps proposed a manual, anatomically based approach to incrementally construct BIF and HCD, thereby systematically expanding brain organ coverage toward achieving a complete WBRA. Large Language Model (LLM) technologies have introduced a paradigm shift, substantially automating the BRA-driven development process. This is largely due to the BRA data being structured around the brain’s anatomy and described in natural language, which aligns well with the capabilities of LLMs for supporting and automating the construction and verification processes. In this paper, we propose a novel technology roadmap to largely automate the creation of WBRA, leveraging neuroscientific insights. This roadmap includes 12 activities for automating BIF construction, notably extracting anatomical structures from scholarly articles. Furthermore, it details 11 activities aimed at enhancing the integration of Hypothetical Component Diagrams (HCD) into the WBRA, focusing on automating checks for functional consistency. This roadmap aims to establish a cost-effective and efficient design process for WBRA, ensuring the availability of brain-morphic software design specifications that are continually validated against the latest neuroscientific knowledge.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of brain-morphic software holds significant promise for creating artificial general intelligence that exhibits high affinity and interpretability for humans and also offers substantial benefits for medical applications. To facilitate this, creating Brain Reference Architecture (BRA) data, serving as a design specification for brain-morphic software is imperative. BRA-driven development, which utilizes Brain Information Flow (BIF) diagrams based on mesoscale brain anatomy and Hypothetical Component Diagrams (HCD) for corresponding computational functionalities, has been proposed to address this need. This methodology formalizes identifying possible functional structures by leveraging existing, albeit insufficient, neuroscientific knowledge. However, applying this methodology across the entire brain, thereby creating a Whole Brain Reference Architecture (WBRA), represents a significant research and development challenge due to its scale and complexity. Technology roadmaps have been introduced as a strategic tool to guide discussion, management, and distribution of resources within such expansive research and development activities. These roadmaps proposed a manual, anatomically based approach to incrementally construct BIF and HCD, thereby systematically expanding brain organ coverage toward achieving a complete WBRA. Large Language Model (LLM) technologies have introduced a paradigm shift, substantially automating the BRA-driven development process. This is largely due to the BRA data being structured around the brain’s anatomy and described in natural language, which aligns well with the capabilities of LLMs for supporting and automating the construction and verification processes. In this paper, we propose a novel technology roadmap to largely automate the creation of WBRA, leveraging neuroscientific insights. This roadmap includes 12 activities for automating BIF construction, notably extracting anatomical structures from scholarly articles. Furthermore, it details 11 activities aimed at enhancing the integration of Hypothetical Component Diagrams (HCD) into the WBRA, focusing on automating checks for functional consistency. This roadmap aims to establish a cost-effective and efficient design process for WBRA, ensuring the availability of brain-morphic software design specifications that are continually validated against the latest neuroscientific knowledge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 BRA 驱动的开发完成全脑架构的技术路线图
脑形态软件的开发为创造人工通用智能带来了巨大的希望,这种人工通用智能与人类具有高度的亲和力和可解释性,同时也为医疗应用带来了巨大的好处。为此,必须创建脑参考架构(BRA)数据,作为脑形态软件的设计规范。为了满足这一需求,我们提出了基于中尺度大脑解剖学的脑信息流图(Brain Information Flow,BIF)和相应计算功能的假设组件图(Hypothetical Component Diagrams,HCD)的脑参考架构驱动开发方法。这种方法通过利用现有的神经科学知识(尽管还不够充分),将识别可能的功能结构正规化。然而,将这种方法应用于整个大脑,从而创建全脑参考架构(WBRA),由于其规模和复杂性,是一项重大的研发挑战。技术路线图已被作为一种战略工具引入,用于指导此类大规模研发活动中的讨论、管理和资源分配。这些路线图提出了一种基于解剖学的手动方法,以逐步构建 BIF 和 HCD,从而系统地扩大大脑器官的覆盖范围,实现完整的 WBRA。大型语言模型(LLM)技术带来了范式的转变,使 BRA 驱动的开发过程大大自动化。这主要是由于 BRA 数据是围绕大脑解剖结构并用自然语言描述的,这与 LLM 在支持和自动化构建和验证过程方面的能力非常吻合。在本文中,我们提出了一个新颖的技术路线图,利用神经科学的洞察力,在很大程度上实现 WBRA 创建的自动化。该路线图包括 12 项自动构建 BIF 的活动,特别是从学术文章中提取解剖结构。此外,它还详细介绍了 11 项旨在加强将假想成分图 (HCD) 整合到 WBRA 中的活动,重点是自动检查功能一致性。该路线图旨在为 WBRA 建立一个经济高效的设计流程,确保提供根据最新神经科学知识不断验证的脑形态软件设计规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1