Yikang Lu , Alberto Aleta , Chunpeng Du , Lei Shi , Yamir Moreno
{"title":"LLMs and generative agent-based models for complex systems research","authors":"Yikang Lu , Alberto Aleta , Chunpeng Du , Lei Shi , Yamir Moreno","doi":"10.1016/j.plrev.2024.10.013","DOIUrl":null,"url":null,"abstract":"<div><div>The advent of Large Language Models (LLMs) offers to transform research across natural and social sciences, offering new paradigms for understanding complex systems. In particular, Generative Agent-Based Models (GABMs), which integrate LLMs to simulate human behavior, have attracted increasing public attention due to their potential to model complex interactions in a wide range of artificial environments. This paper briefly reviews the disruptive role LLMs are playing in fields such as network science, evolutionary game theory, social dynamics, and epidemic modeling. We assess recent advancements, including the use of LLMs for predicting social behavior, enhancing cooperation in game theory, and modeling disease propagation. The findings demonstrate that LLMs can reproduce human-like behaviors, such as fairness, cooperation, and social norm adherence, while also introducing unique advantages such as cost efficiency, scalability, and ethical simplification. However, the results reveal inconsistencies in their behavior tied to prompt sensitivity, hallucinations and even the model characteristics, pointing to challenges in controlling these AI-driven agents. Despite their potential, the effective integration of LLMs into decision-making processes —whether in government, societal, or individual contexts— requires addressing biases, prompt design challenges, and understanding the dynamics of human-machine interactions. Future research must refine these models, standardize methodologies, and explore the emergence of new cooperative behaviors as LLMs increasingly interact with humans and each other, potentially transforming how decisions are made across various systems.</div></div>","PeriodicalId":403,"journal":{"name":"Physics of Life Reviews","volume":"51 ","pages":"Pages 283-293"},"PeriodicalIF":13.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Life Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571064524001386","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of Large Language Models (LLMs) offers to transform research across natural and social sciences, offering new paradigms for understanding complex systems. In particular, Generative Agent-Based Models (GABMs), which integrate LLMs to simulate human behavior, have attracted increasing public attention due to their potential to model complex interactions in a wide range of artificial environments. This paper briefly reviews the disruptive role LLMs are playing in fields such as network science, evolutionary game theory, social dynamics, and epidemic modeling. We assess recent advancements, including the use of LLMs for predicting social behavior, enhancing cooperation in game theory, and modeling disease propagation. The findings demonstrate that LLMs can reproduce human-like behaviors, such as fairness, cooperation, and social norm adherence, while also introducing unique advantages such as cost efficiency, scalability, and ethical simplification. However, the results reveal inconsistencies in their behavior tied to prompt sensitivity, hallucinations and even the model characteristics, pointing to challenges in controlling these AI-driven agents. Despite their potential, the effective integration of LLMs into decision-making processes —whether in government, societal, or individual contexts— requires addressing biases, prompt design challenges, and understanding the dynamics of human-machine interactions. Future research must refine these models, standardize methodologies, and explore the emergence of new cooperative behaviors as LLMs increasingly interact with humans and each other, potentially transforming how decisions are made across various systems.
期刊介绍:
Physics of Life Reviews, published quarterly, is an international journal dedicated to review articles on the physics of living systems, complex phenomena in biological systems, and related fields including artificial life, robotics, mathematical bio-semiotics, and artificial intelligent systems. Serving as a unifying force across disciplines, the journal explores living systems comprehensively—from molecules to populations, genetics to mind, and artificial systems modeling these phenomena. Inviting reviews from actively engaged researchers, the journal seeks broad, critical, and accessible contributions that address recent progress and sometimes controversial accounts in the field.