Anthony-Alexander Christidis , Stefan Van Aelst , Ruben Zamar
{"title":"Multi-model subset selection","authors":"Anthony-Alexander Christidis , Stefan Van Aelst , Ruben Zamar","doi":"10.1016/j.csda.2024.108073","DOIUrl":null,"url":null,"abstract":"<div><div>The two primary approaches for high-dimensional regression problems are sparse methods (e.g., best subset selection, which uses the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-norm in the penalty) and ensemble methods (e.g., random forests). Although sparse methods typically yield interpretable models, in terms of prediction accuracy they are often outperformed by “blackbox” multi-model ensemble methods. A regression ensemble is introduced which combines the interpretability of sparse methods with the high prediction accuracy of ensemble methods. An algorithm is proposed to solve the joint optimization of the corresponding <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-penalized regression models by extending recent developments in <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-optimization for sparse methods to multi-model regression ensembles. The sparse and diverse models in the ensemble are learned simultaneously from the data. Each of these models provides an explanation for the relationship between a subset of predictors and the response variable. Empirical studies and theoretical knowledge about ensembles are used to gain insight into the ensemble method's performance, focusing on the interplay between bias, variance, covariance, and variable selection. In prediction tasks, the ensembles can outperform state-of-the-art competitors on both simulated and real data. Forward stepwise regression is also generalized to multi-model regression ensembles and used to obtain an initial solution for the algorithm. The optimization algorithms are implemented in publicly available software packages.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"203 ","pages":"Article 108073"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001579","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The two primary approaches for high-dimensional regression problems are sparse methods (e.g., best subset selection, which uses the -norm in the penalty) and ensemble methods (e.g., random forests). Although sparse methods typically yield interpretable models, in terms of prediction accuracy they are often outperformed by “blackbox” multi-model ensemble methods. A regression ensemble is introduced which combines the interpretability of sparse methods with the high prediction accuracy of ensemble methods. An algorithm is proposed to solve the joint optimization of the corresponding -penalized regression models by extending recent developments in -optimization for sparse methods to multi-model regression ensembles. The sparse and diverse models in the ensemble are learned simultaneously from the data. Each of these models provides an explanation for the relationship between a subset of predictors and the response variable. Empirical studies and theoretical knowledge about ensembles are used to gain insight into the ensemble method's performance, focusing on the interplay between bias, variance, covariance, and variable selection. In prediction tasks, the ensembles can outperform state-of-the-art competitors on both simulated and real data. Forward stepwise regression is also generalized to multi-model regression ensembles and used to obtain an initial solution for the algorithm. The optimization algorithms are implemented in publicly available software packages.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]