Exploring the climatic conditions effect on spatial urban photovoltaic systems development using a spatial multi-criteria decision analysis: A multi-city analysis
Abouzar Gholamalizadeh , Saman Nadizadeh Shorabeh , Kianoosh Choubineh , Alireza Karimi , Laleh Ghahremani , Mohammad Karimi Firozjaei
{"title":"Exploring the climatic conditions effect on spatial urban photovoltaic systems development using a spatial multi-criteria decision analysis: A multi-city analysis","authors":"Abouzar Gholamalizadeh , Saman Nadizadeh Shorabeh , Kianoosh Choubineh , Alireza Karimi , Laleh Ghahremani , Mohammad Karimi Firozjaei","doi":"10.1016/j.scs.2024.105941","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying suitable locations for urban photovoltaic systems (UPVS) is crucial for achieving sustainable energy objectives and designing smart, eco-friendly cities. This study assesses the potential for UPVS expansion in eight cities across different climatic zones in Iran using a spatial multi-criteria decision-making method. Two scenarios were analyzed: the first compared spatial potential within each city, and the second compared potential between cities. The findings indicate that rooftops of the tallest buildings in densely populated areas, especially those with high solar energy output and sky view factor, hold the greatest potential for UPVS development. These locations are often near parks, commercial centers, and road networks. In the first scenario, Ardabil (5.70%), Gorgan (4.65%), Mashhad (5.46%), Tehran (8.10%), Kermanshah (5.76%), Shahrekord (3.41%), Kerman (8.67%), and Zahedan (8.56%) show significant potential for photovoltaic development. In the second scenario, cities in hot, dry climates like Zahedan and Kerman exhibit greater potential compared to cities in moderate, humid climates like Ardabil and Gorgan. Based on the analysis of this scenario, Ardabil (0.04%), Gorgan (1.49%), Mashhad (5.58%), Tehran (5.06%), Kermanshah (0.00%), Shaherkord (0.03%), Kerman (21.70%) and Zahedan (39.11%) showed a very high potential for UPVS development. The results of this study offer valuable insights for urban solar energy planning.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":"116 ","pages":"Article 105941"},"PeriodicalIF":10.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724007650","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying suitable locations for urban photovoltaic systems (UPVS) is crucial for achieving sustainable energy objectives and designing smart, eco-friendly cities. This study assesses the potential for UPVS expansion in eight cities across different climatic zones in Iran using a spatial multi-criteria decision-making method. Two scenarios were analyzed: the first compared spatial potential within each city, and the second compared potential between cities. The findings indicate that rooftops of the tallest buildings in densely populated areas, especially those with high solar energy output and sky view factor, hold the greatest potential for UPVS development. These locations are often near parks, commercial centers, and road networks. In the first scenario, Ardabil (5.70%), Gorgan (4.65%), Mashhad (5.46%), Tehran (8.10%), Kermanshah (5.76%), Shahrekord (3.41%), Kerman (8.67%), and Zahedan (8.56%) show significant potential for photovoltaic development. In the second scenario, cities in hot, dry climates like Zahedan and Kerman exhibit greater potential compared to cities in moderate, humid climates like Ardabil and Gorgan. Based on the analysis of this scenario, Ardabil (0.04%), Gorgan (1.49%), Mashhad (5.58%), Tehran (5.06%), Kermanshah (0.00%), Shaherkord (0.03%), Kerman (21.70%) and Zahedan (39.11%) showed a very high potential for UPVS development. The results of this study offer valuable insights for urban solar energy planning.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;