Sustained hydrogen production through alkaline water electrolysis using Bridgman–Stockbarger derived indium-impregnated copper chromium selenospinel

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-10-31 DOI:10.1016/j.ijhydene.2024.10.352
{"title":"Sustained hydrogen production through alkaline water electrolysis using Bridgman–Stockbarger derived indium-impregnated copper chromium selenospinel","authors":"","doi":"10.1016/j.ijhydene.2024.10.352","DOIUrl":null,"url":null,"abstract":"<div><div>The depletion of conventional fossil fuels necessitates the development of sustainable energy alternatives, with electrochemical water splitting for hydrogen (H<sub>2</sub>) production being a promising solution. However, large-scale hydrogen generation is hindered by the scarcity of cost-effective electrocatalysts to replace noble metals such as Pt and RuO<sub>2</sub> in the Oxygen Evolution Reaction (OER) and Hydrogen Evolution Reaction (HER). In this study, we report the synthesis of CuCr<sub>2-x</sub>In<sub>x</sub>Se<sub>4</sub> (x = 0, 0.2, 0.4) using a dual approach combining the Bridgman-Stockbarger method and ball milling. Among the synthesized materials, CuCr<sub>1.8</sub>In<sub>0.2</sub>Se<sub>4</sub> demonstrates outstanding HER activity in 1.0 M KOH, achieving a potential of −0.16 V vs. RHE at a current density of 10 mA cm<sup>−2</sup>. Moreover, the material shows remarkable durability during a three-electrode accelerated degradation test in an alkaline medium, maintaining its performance over 24 h at a constant current density of −200 mA cm<sup>−2</sup>, with a stable potential of −0.57 V vs. RHE. Additionally, CuCr<sub>1.8</sub>In<sub>0.2</sub>Se<sub>4</sub> was tested in a two-electrode configuration alongside CoFe LDH, achieving a benchmark of 1.7 V for overall water splitting. It sustained a current density of 400 mA cm<sup>−2</sup> for 24 h in an accelerated degradation test, exhibiting a minimal loss of 0.1 V after the testing period. These results highlight CuCr<sub>1.8</sub>In<sub>0.2</sub>Se<sub>4</sub> as a promising non-noble metal catalyst for HER, demonstrating its potential to reduce reliance on noble materials for large-scale hydrogen production.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924045579","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The depletion of conventional fossil fuels necessitates the development of sustainable energy alternatives, with electrochemical water splitting for hydrogen (H2) production being a promising solution. However, large-scale hydrogen generation is hindered by the scarcity of cost-effective electrocatalysts to replace noble metals such as Pt and RuO2 in the Oxygen Evolution Reaction (OER) and Hydrogen Evolution Reaction (HER). In this study, we report the synthesis of CuCr2-xInxSe4 (x = 0, 0.2, 0.4) using a dual approach combining the Bridgman-Stockbarger method and ball milling. Among the synthesized materials, CuCr1.8In0.2Se4 demonstrates outstanding HER activity in 1.0 M KOH, achieving a potential of −0.16 V vs. RHE at a current density of 10 mA cm−2. Moreover, the material shows remarkable durability during a three-electrode accelerated degradation test in an alkaline medium, maintaining its performance over 24 h at a constant current density of −200 mA cm−2, with a stable potential of −0.57 V vs. RHE. Additionally, CuCr1.8In0.2Se4 was tested in a two-electrode configuration alongside CoFe LDH, achieving a benchmark of 1.7 V for overall water splitting. It sustained a current density of 400 mA cm−2 for 24 h in an accelerated degradation test, exhibiting a minimal loss of 0.1 V after the testing period. These results highlight CuCr1.8In0.2Se4 as a promising non-noble metal catalyst for HER, demonstrating its potential to reduce reliance on noble materials for large-scale hydrogen production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用布里奇曼-斯托克巴格衍生的铟浸渍铜铬硒磷酸盐通过碱性水电解持续制氢
传统化石燃料的枯竭要求开发可持续的能源替代品,而电化学水分离制氢(H2)是一种前景广阔的解决方案。然而,在氧进化反应(OER)和氢进化反应(HER)中,由于缺乏具有成本效益的电催化剂来替代铂和 RuO2 等贵金属,大规模制氢受到了阻碍。在本研究中,我们采用布里奇曼-斯托克巴格法和球磨法相结合的双重方法合成了 CuCr2-xInxSe4 (x = 0, 0.2, 0.4)。在合成的材料中,CuCr1.8In0.2Se4 在 1.0 M KOH 中表现出卓越的 HER 活性,在电流密度为 10 mA cm-2 时,与 RHE 相比电位达到 -0.16 V。此外,在碱性介质中进行的三电极加速降解测试中,这种材料显示出卓越的耐久性,在-200 mA cm-2 的恒定电流密度下,其性能可维持 24 小时,与 RHE 相比,电位稳定在-0.57 V。此外,CuCr1.8In0.2Se4 与 CoFe LDH 一起在双电极配置中进行了测试,达到了 1.7 V 的整体水分离基准。在加速降解测试中,它能在 24 小时内维持 400 mA cm-2 的电流密度,测试结束后的电压损失仅为 0.1 V。这些结果突出表明,CuCr1.8In0.2Se4 是一种很有前途的 HER 非贵金属催化剂,显示了它在大规模制氢过程中减少对贵金属材料依赖的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Exploiting the Ocean Thermal Energy Conversion (OTEC) technology for green hydrogen production and storage: Exergo-economic analysis Kinetic models for the methanation of COx gases to produce methane: A critical analysis Boosted Hydrogen evolution reaction based on synergistic effect of graphene, MoS2 and RuO2 ternary electrocatalyst Enhanced hydrogen storage properties of light metals dispersed boron hydride monolayer Performance improvement of magnesium-based hydrogen storage tanks by using carbon nanotubes addition and finned heat exchanger: Numerical simulation and experimental verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1