Enhanced photorespiratory and TCA pathways by elevated CO2 to manage ammonium nutrition in tomato leaves

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2024-10-25 DOI:10.1016/j.plaphy.2024.109216
Izargi Vega-Mas, Daniel Marino, Marlon De la Peña, Teresa Fuertes-Mendizábal, Carmen González-Murua, José María Estavillo, María Begoña González-Moro
{"title":"Enhanced photorespiratory and TCA pathways by elevated CO2 to manage ammonium nutrition in tomato leaves","authors":"Izargi Vega-Mas,&nbsp;Daniel Marino,&nbsp;Marlon De la Peña,&nbsp;Teresa Fuertes-Mendizábal,&nbsp;Carmen González-Murua,&nbsp;José María Estavillo,&nbsp;María Begoña González-Moro","doi":"10.1016/j.plaphy.2024.109216","DOIUrl":null,"url":null,"abstract":"<div><div>Plants grown under exclusive ammonium (NH<sub>4</sub><sup>+</sup>) nutrition have high carbon (C) demand to sustain proper nitrogen (N) assimilation and energy required for plant growth, generally impaired when compared to nitrate (NO<sub>3</sub><sup>−</sup>) nutrition. Thereby, the increment of the atmospheric carbon dioxide (CO<sub>2</sub>) concentration, in the context of climate change, will potentially allow plants to better face ammonium nutrition. In this work, tomato (<em>Solanum lycopersicum</em> L.) plants were grown under ammonium or nitrate nutrition in conditions of ambient (aCO<sub>2</sub>, 400 ppm) or elevated CO<sub>2</sub> (eCO<sub>2,</sub> 800 ppm) atmosphere. Elevated CO<sub>2</sub> increased photosynthesis rate and tomato shoot growth regardless of the N source. In the case of NH<sub>4</sub><sup>+</sup>-fed leaves the positive effect of elevated CO<sub>2</sub> occurred despite of the high tissue NH<sub>4</sub><sup>+</sup> accumulation. Under eCO<sub>2</sub> ammonium nutrition triggered, among others, the modulation of genes related to C provision pathways (including carbonic anhydrase and glyoxylate cycle), antioxidant response and cell membranes protection. The enhanced photosynthate production at eCO<sub>2</sub> facilitated C skeleton provision through the TCA cycle and anaplerotic pathways to promote amino acid synthesis. Moreover, photorespiratory activity was stimulated by eCO<sub>2</sub> and contributed to yield serine as additional sink for NH<sub>4</sub><sup>+</sup> excess. Overall, these changes denote a connection between the respiratory and the photorespiratory pathways linked to ammonium nutrition. This metabolic strategy may allow crops to grow efficiently using ammonium as fertilizer in a future climate change scenario, while mitigating N losses.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"217 ","pages":"Article 109216"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824008842","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plants grown under exclusive ammonium (NH4+) nutrition have high carbon (C) demand to sustain proper nitrogen (N) assimilation and energy required for plant growth, generally impaired when compared to nitrate (NO3) nutrition. Thereby, the increment of the atmospheric carbon dioxide (CO2) concentration, in the context of climate change, will potentially allow plants to better face ammonium nutrition. In this work, tomato (Solanum lycopersicum L.) plants were grown under ammonium or nitrate nutrition in conditions of ambient (aCO2, 400 ppm) or elevated CO2 (eCO2, 800 ppm) atmosphere. Elevated CO2 increased photosynthesis rate and tomato shoot growth regardless of the N source. In the case of NH4+-fed leaves the positive effect of elevated CO2 occurred despite of the high tissue NH4+ accumulation. Under eCO2 ammonium nutrition triggered, among others, the modulation of genes related to C provision pathways (including carbonic anhydrase and glyoxylate cycle), antioxidant response and cell membranes protection. The enhanced photosynthate production at eCO2 facilitated C skeleton provision through the TCA cycle and anaplerotic pathways to promote amino acid synthesis. Moreover, photorespiratory activity was stimulated by eCO2 and contributed to yield serine as additional sink for NH4+ excess. Overall, these changes denote a connection between the respiratory and the photorespiratory pathways linked to ammonium nutrition. This metabolic strategy may allow crops to grow efficiently using ammonium as fertilizer in a future climate change scenario, while mitigating N losses.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高浓度 CO2 可增强光合作用和 TCA 途径,从而管理番茄叶片中的铵营养
与硝酸盐(NO3-)营养相比,在铵营养(NH4+)条件下生长的植物需要大量的碳(C)来维持植物生长所需的氮(N)同化和能量。因此,在气候变化的背景下,大气中二氧化碳(CO2)浓度的增加有可能使植物更好地面对铵盐营养。在这项研究中,番茄(Solanum lycopersicum L.)植株在氨营养或硝酸盐营养条件下生长,生长环境为常温(aCO2,400 ppm)或二氧化碳浓度升高(eCO2,800 ppm)的大气。无论氮源如何,高浓度 CO2 都能提高光合作用速率和番茄植株的生长。在 NH4+喂养的叶片中,尽管组织中 NH4+ 积累较多,但高浓度 CO2 仍产生了积极影响。在 eCO2 条件下,铵营养引发了与 C 供给途径(包括碳酸酐酶和乙醛酸循环)、抗氧化反应和细胞膜保护相关的基因调控。在 eCO2 条件下,光合作用产生的光能促进了通过 TCA 循环和无氧代谢途径提供 C 骨架,从而促进氨基酸的合成。此外,eCO2 还刺激了光呼吸活动,并有助于产生丝氨酸作为 NH4+ 过量的额外吸收汇。总之,这些变化表明呼吸和光呼吸途径与铵营养有关。在未来气候变化的情况下,这种代谢策略可使作物利用铵作为肥料高效生长,同时减少氮的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Functional characterization of Camptotheca acuminata 7-deoxyloganetic acid synthases and 7-deoxyloganetic acid glucosyltransferases involved in camptothecin biosynthesis. Developing fluorescence hyperspectral imaging methods for non-invasive detection of herbicide safeners action mechanism and effectiveness. Effect of elevated ammonium on biotic and abiotic stress defense responses and expression of related genes in cucumber (Cucumis sativus L.) plants. Genome-wide identification of SWEET gene family and the sugar transport function of three candidate genes during female flower bud induction stage of Juglans sigillata Dode. ZnO nanoparticles enhances cadmium tolerance by modulating N6-methyladenosine (m6A) level of stress-responsive genes NRT1 and GM35E in vegetable soybean.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1