Magdalena Godzina, Roberto Terracciano, Zivani Varanaraja, Daniel MacKinnon, C. Remzi Becer
{"title":"Self-assembled nanoparticles of PEG and poly(2-oxazoline) based lactide block copolymers","authors":"Magdalena Godzina, Roberto Terracciano, Zivani Varanaraja, Daniel MacKinnon, C. Remzi Becer","doi":"10.1016/j.eurpolymj.2024.113517","DOIUrl":null,"url":null,"abstract":"<div><div>Access to self-assembled nanoparticles has become increasingly vital for the development of next generation adjuvants for the delivery of nucleic acid therapeutics. However, the block ratio of amphiphilic block copolymers plays a significant role in achieving the desired architectures and in some cases coformulation of two different block copolymers is needed. Herein, we introduce an elegant approach to self-assembled stomatocytes and cubosomes through coformulation of PEG and poly(2-oxazoline) (POx) based lactide diblock copolymers. A series of well-defined POx macroinitiators and their block copolymers with D,L-lactide (PDLLA) has been synthesized and achieved narrow polydispersity indices at high monomer conversions. Thermal analysis of block copolymers indicated tunable glass transition temperatures (<em>T<sub>g</sub></em>) ranging from 33 °C to 56 °C. Other critical factors influencing the structure of the nanoparticle included the ratio of POx-PDLLA and PEG-PDLLA blocks as well as the hydrophobicity of the POx block. Moreover, DLS and cryo-TEM analysis revealed the formation of diverse nanostructures, namely stomatocytes, pseudo-vesicles, and possibly cubosomes. This versatile platform allows for precise control over nanoparticle shapes by adjusting block lengths and coformulation ratios. This highlights the potential of using coformulations in biomedical applications, enabling the rational design of advanced nanomaterials with tailored functionalities for specific targets.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"221 ","pages":"Article 113517"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001430572400778X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Access to self-assembled nanoparticles has become increasingly vital for the development of next generation adjuvants for the delivery of nucleic acid therapeutics. However, the block ratio of amphiphilic block copolymers plays a significant role in achieving the desired architectures and in some cases coformulation of two different block copolymers is needed. Herein, we introduce an elegant approach to self-assembled stomatocytes and cubosomes through coformulation of PEG and poly(2-oxazoline) (POx) based lactide diblock copolymers. A series of well-defined POx macroinitiators and their block copolymers with D,L-lactide (PDLLA) has been synthesized and achieved narrow polydispersity indices at high monomer conversions. Thermal analysis of block copolymers indicated tunable glass transition temperatures (Tg) ranging from 33 °C to 56 °C. Other critical factors influencing the structure of the nanoparticle included the ratio of POx-PDLLA and PEG-PDLLA blocks as well as the hydrophobicity of the POx block. Moreover, DLS and cryo-TEM analysis revealed the formation of diverse nanostructures, namely stomatocytes, pseudo-vesicles, and possibly cubosomes. This versatile platform allows for precise control over nanoparticle shapes by adjusting block lengths and coformulation ratios. This highlights the potential of using coformulations in biomedical applications, enabling the rational design of advanced nanomaterials with tailored functionalities for specific targets.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.