Clémence Fontaine , Lola Lilensten , Dalibor Preisler , Josef Strasky , Mathilde Laurent-Brocq , Philippe Chevallier , Amélie Fillon , Daniel Galy , Milos Janecek , Frédéric Prima
{"title":"Local characterization of mechanical properties and deformation mechanisms of SPS graded strain-transformable Ti-Nb alloy","authors":"Clémence Fontaine , Lola Lilensten , Dalibor Preisler , Josef Strasky , Mathilde Laurent-Brocq , Philippe Chevallier , Amélie Fillon , Daniel Galy , Milos Janecek , Frédéric Prima","doi":"10.1016/j.matchar.2024.114482","DOIUrl":null,"url":null,"abstract":"<div><div>Compositional boundaries of activity regarding transformation-induced plasticity and mechanical twinning (TRIP/TWIP) in Ti-Nb alloying system is determined by a novel methodology using chemically graded samples prepared by Spark Plasma Sintering. Presented methods of characterization include nanoindentation and microindentation testing complemented by EBSD analyses. The link between composition, microstructure, deformation mechanisms and mechanical properties can be established. Applied to the Ti-Nb system for a proof of concept, both the identification of local mechanical properties with respect to composition, and the refinement of the compositional ranges within which the different deformation mechanisms occur can be obtained. The graded sample ranging from 14 at.% to 34 at.% Nb is studied. TRIP/TWIP activity is resolved by EBSD in range 17 to 24 at.% of Nb, which is significantly lower than the results from the literature. This difference is attributed to the presence of interstitial oxygen (2470 ± 60 weight ppm).</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114482"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008635","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Compositional boundaries of activity regarding transformation-induced plasticity and mechanical twinning (TRIP/TWIP) in Ti-Nb alloying system is determined by a novel methodology using chemically graded samples prepared by Spark Plasma Sintering. Presented methods of characterization include nanoindentation and microindentation testing complemented by EBSD analyses. The link between composition, microstructure, deformation mechanisms and mechanical properties can be established. Applied to the Ti-Nb system for a proof of concept, both the identification of local mechanical properties with respect to composition, and the refinement of the compositional ranges within which the different deformation mechanisms occur can be obtained. The graded sample ranging from 14 at.% to 34 at.% Nb is studied. TRIP/TWIP activity is resolved by EBSD in range 17 to 24 at.% of Nb, which is significantly lower than the results from the literature. This difference is attributed to the presence of interstitial oxygen (2470 ± 60 weight ppm).
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.