{"title":"Synthesis and characterization of Er2O3-doped Y2O3 nanoparticle incorporated optical fiber for use as optical amplifier","authors":"Shaibal Sahoo , Sushanta Kr Mohapatra , Dipanjan Karmakar , Aruna Ghosh , Uttam Kr Samanta , Kausik Dana , Mukul Chandra Paul , K. Annapurna , Arnab Mukherjee , Anirban Dhar","doi":"10.1016/j.jlumin.2024.120966","DOIUrl":null,"url":null,"abstract":"<div><div>Erbium oxide (Er<sub>2</sub>O<sub>3</sub>)-doped optical fibers (EDF) are well-known for their applications in optical amplification at 1550 nm. In this study, we present the synthesis of Er<sub>2</sub>O<sub>3</sub>-doped yttrium oxide (Y<sub>2</sub>O<sub>3</sub>) nanoparticles (NPs) using a homogeneous coprecipitation technique and their integration into optical fibers for enhanced optical amplification. A series of NP samples with varying Y/Er molar ratios were synthesized to identify the optimal composition for incorporation into optical fibers. X-ray diffraction (XRD) analysis revealed that the nanoparticles crystallize in a cubic geometry (space group Ia3) with crystallite sizes ranging from 20 to 41 nm. These sizes increased approximately to 90 nm as the calcination temperature was raised from 1000°C to 1400°C. Field emission scanning electron microscopy (FESEM) corroborated the XRD results, while high-resolution transmission electron microscopy (HRTEM) confirmed the crystalline structure and an average particle size of approximately 100 nm. Photoluminescence studies showed that emission and excitation intensities were functions of the Y/Er molar concentration ratio and calcination temperature, with the lifetime extending up to 6.86 ms for a sample with a 0.25:0.01 Y<sub>2</sub>O<sub>3</sub>:Er<sub>2</sub>O<sub>3</sub> ratio calcined at 1400°C. To assess the performance of the synthesized NPs, an optical preform was prepared using the Vapor Phase Delivery (VPD) method combined with the Solution Doping (SD) technique. The preform was then drawn into fiber, and its amplification performance was evaluated. The resulting fiber demonstrated efficient amplification with a gain of 14.9 dB with respect to 0 dBm input signal at 1550 nm under 150 mW pump power from 9 m active fiber, indicating its potential as a gain medium for constructing erbium-doped fiber amplifiers (EDFAs).</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120966"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324005301","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Erbium oxide (Er2O3)-doped optical fibers (EDF) are well-known for their applications in optical amplification at 1550 nm. In this study, we present the synthesis of Er2O3-doped yttrium oxide (Y2O3) nanoparticles (NPs) using a homogeneous coprecipitation technique and their integration into optical fibers for enhanced optical amplification. A series of NP samples with varying Y/Er molar ratios were synthesized to identify the optimal composition for incorporation into optical fibers. X-ray diffraction (XRD) analysis revealed that the nanoparticles crystallize in a cubic geometry (space group Ia3) with crystallite sizes ranging from 20 to 41 nm. These sizes increased approximately to 90 nm as the calcination temperature was raised from 1000°C to 1400°C. Field emission scanning electron microscopy (FESEM) corroborated the XRD results, while high-resolution transmission electron microscopy (HRTEM) confirmed the crystalline structure and an average particle size of approximately 100 nm. Photoluminescence studies showed that emission and excitation intensities were functions of the Y/Er molar concentration ratio and calcination temperature, with the lifetime extending up to 6.86 ms for a sample with a 0.25:0.01 Y2O3:Er2O3 ratio calcined at 1400°C. To assess the performance of the synthesized NPs, an optical preform was prepared using the Vapor Phase Delivery (VPD) method combined with the Solution Doping (SD) technique. The preform was then drawn into fiber, and its amplification performance was evaluated. The resulting fiber demonstrated efficient amplification with a gain of 14.9 dB with respect to 0 dBm input signal at 1550 nm under 150 mW pump power from 9 m active fiber, indicating its potential as a gain medium for constructing erbium-doped fiber amplifiers (EDFAs).
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.