{"title":"Ultrasonic backscattering measurement of hardness gradient distribution in polycrystalline materials","authors":"Changze Li, Ping Chen, Tong Fu, Xin Yu","doi":"10.1016/j.ultras.2024.107496","DOIUrl":null,"url":null,"abstract":"<div><div>It is crucial to obtain the internal hardness distribution in polycrystalline materials to evaluate the mechanical performance of components and monitor their service life. Current methods, however, fail to meet the non-destructive evaluation needs for materials with hardness gradient distributions. This paper, based on the principle of grain boundary scattering of ultrasound in polycrystalline materials, combined with the Transverse-to-Transverse Singly-Scattered Response (T-T SSR) theory, proposes an ultrasonic SSR model adapted to hardness gradient distributions. The model elucidates the influence of hardness gradient variations and grain dispersion on ultrasonic scattering. Using DREAM.3D, seven different-scale polycrystalline volumes were constructed to assess the relevance of volume-weighted average grain size and spatial correlation of hardness gradient materials. Finally, induction quenching was applied to 40Cr to induce a gradient hardness distribution internally, followed by ultrasonic backscatter experiments. The results indicate that the theoretical model and the spatial variance of measured signals align well over a relatively long time window. For the specimen with minor curvature, the theoretical hardness distribution obtained by the model is accurate, with an average error of 2.55 % compared to destructive testing data. However, the results for the larger curvature reveal limitations in the model.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24002592","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is crucial to obtain the internal hardness distribution in polycrystalline materials to evaluate the mechanical performance of components and monitor their service life. Current methods, however, fail to meet the non-destructive evaluation needs for materials with hardness gradient distributions. This paper, based on the principle of grain boundary scattering of ultrasound in polycrystalline materials, combined with the Transverse-to-Transverse Singly-Scattered Response (T-T SSR) theory, proposes an ultrasonic SSR model adapted to hardness gradient distributions. The model elucidates the influence of hardness gradient variations and grain dispersion on ultrasonic scattering. Using DREAM.3D, seven different-scale polycrystalline volumes were constructed to assess the relevance of volume-weighted average grain size and spatial correlation of hardness gradient materials. Finally, induction quenching was applied to 40Cr to induce a gradient hardness distribution internally, followed by ultrasonic backscatter experiments. The results indicate that the theoretical model and the spatial variance of measured signals align well over a relatively long time window. For the specimen with minor curvature, the theoretical hardness distribution obtained by the model is accurate, with an average error of 2.55 % compared to destructive testing data. However, the results for the larger curvature reveal limitations in the model.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.