New insight on the formation of uneven oxide scales on AFA steel in supercritical CO2: Roles of recrystallization degree on the high temperature corrosion resistance
Qiyin Zhou , Jianye Chen , Huigang Shi , Lefu Zhang , Yanping Huang , Gen Zhang , Yongfu Zhao , Xianglong Guo
{"title":"New insight on the formation of uneven oxide scales on AFA steel in supercritical CO2: Roles of recrystallization degree on the high temperature corrosion resistance","authors":"Qiyin Zhou , Jianye Chen , Huigang Shi , Lefu Zhang , Yanping Huang , Gen Zhang , Yongfu Zhao , Xianglong Guo","doi":"10.1016/j.corsci.2024.112540","DOIUrl":null,"url":null,"abstract":"<div><div>Uneven oxide scale is a common phenomenon in high-temperature corrosion, but the formation mechanism has not been fully uncovered. A new alumina-forming austenitic (AFA) stainless steel with superior corrosion resistance in 650°C/15 MPa SC-CO<sub>2</sub>, has been systematically investigated. It is demonstrated that the uneven oxide was formed by the significant impact of the recrystallization behavior of AFA steel on its microstructural evolution and subsequent corrosion behavior. Compared with the thin oxide scale, the thick oxide scale was caused by the relatively higher density of dislocations and grain boundaries of matrix resulting from delayed recrystallization, which facilitated the rapid outward diffusion of ions.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112540"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X24007352","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Uneven oxide scale is a common phenomenon in high-temperature corrosion, but the formation mechanism has not been fully uncovered. A new alumina-forming austenitic (AFA) stainless steel with superior corrosion resistance in 650°C/15 MPa SC-CO2, has been systematically investigated. It is demonstrated that the uneven oxide was formed by the significant impact of the recrystallization behavior of AFA steel on its microstructural evolution and subsequent corrosion behavior. Compared with the thin oxide scale, the thick oxide scale was caused by the relatively higher density of dislocations and grain boundaries of matrix resulting from delayed recrystallization, which facilitated the rapid outward diffusion of ions.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.