The catalytic effect of Pt0 species on Pt/ZnO nanorods for robust triethylamine sensing detection

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Bulletin Pub Date : 2024-10-22 DOI:10.1016/j.materresbull.2024.113156
Li-Juan Yue , Su-Mei Shen , Wen-Jie Zhang , Fei-Long Gong, Xuan-Yu Yang, Yong-Hui Zhang
{"title":"The catalytic effect of Pt0 species on Pt/ZnO nanorods for robust triethylamine sensing detection","authors":"Li-Juan Yue ,&nbsp;Su-Mei Shen ,&nbsp;Wen-Jie Zhang ,&nbsp;Fei-Long Gong,&nbsp;Xuan-Yu Yang,&nbsp;Yong-Hui Zhang","doi":"10.1016/j.materresbull.2024.113156","DOIUrl":null,"url":null,"abstract":"<div><div>The noble metal Pt modified ZnO nanomaterials are widely used to improve their gas sensing performance. However, the relationship between the catalytic effect of Pt<sup>x+</sup> species on the oxygen vacancies formation and gas-sensing performance is still unclear. Herein, the Pt/ZnO nanorods are successfully synthesized by using hydrothermal method, and the content of Pt<sup>0</sup> species are finely tuned through treating in different atmospheres. Notably, Pt modified ZnO calcined under Ar/H<sub>2</sub> (Pt/ZnO-3) exhibits excellent sensing response (R<sub>a</sub>/R<sub>g</sub> = 2196, 81 times higher than pure ZnO) to 50 ppm triethylamine at 140 °C, with fast response/recovery behavior, low limit of detection, and superior selectivity. Detailed structural characterization indicates that Pt nanoparticle modification reduces the band gap of the samples. In addition, the high content of Pt<sup>0</sup> species promotes the generation of adsorbed oxygen, which significantly enhances the gas-sensitive performance of the sensor. This work demonstrates that the concentration of Pt<sup>0</sup> species greatly affects gas-sensing performance.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113156"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004860","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The noble metal Pt modified ZnO nanomaterials are widely used to improve their gas sensing performance. However, the relationship between the catalytic effect of Ptx+ species on the oxygen vacancies formation and gas-sensing performance is still unclear. Herein, the Pt/ZnO nanorods are successfully synthesized by using hydrothermal method, and the content of Pt0 species are finely tuned through treating in different atmospheres. Notably, Pt modified ZnO calcined under Ar/H2 (Pt/ZnO-3) exhibits excellent sensing response (Ra/Rg = 2196, 81 times higher than pure ZnO) to 50 ppm triethylamine at 140 °C, with fast response/recovery behavior, low limit of detection, and superior selectivity. Detailed structural characterization indicates that Pt nanoparticle modification reduces the band gap of the samples. In addition, the high content of Pt0 species promotes the generation of adsorbed oxygen, which significantly enhances the gas-sensitive performance of the sensor. This work demonstrates that the concentration of Pt0 species greatly affects gas-sensing performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pt/ZnO 纳米棒上的 Pt0 物种对三乙胺传感检测的催化作用
贵金属铂修饰的 ZnO 纳米材料被广泛用于提高其气体传感性能。然而,Ptx+物种对氧空位形成的催化作用与气体传感性能之间的关系尚不清楚。本文采用水热法成功合成了 Pt/ZnO 纳米棒,并通过在不同气氛中的处理对 Pt0 物种的含量进行了微调。值得注意的是,在 Ar/H2 条件下煅烧的铂修饰氧化锌(Pt/ZnO-3)在 140 °C 下对 50 ppm 的三乙胺具有极佳的传感响应(Ra/Rg = 2196,是纯氧化锌的 81 倍)、快速响应/恢复行为、低检测限和卓越的选择性。详细的结构表征表明,铂纳米粒子修饰降低了样品的带隙。此外,高含量的 Pt0 物种促进了吸附氧的生成,从而显著提高了传感器的气敏性能。这项工作表明,Pt0 物种的浓度会极大地影响气敏性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
期刊最新文献
Effect of Cr substitution in ZnFe2O4 nanoparticles on the electron transfer at electrochemical interfaces Zn2+-decorated porous g-C3N4 with nitrogen vacancies: Synthesis, enhanced photocatalytic performance and mechanism in degrading organic contaminants Efficient enhancement of piezo-catalytic activity of BaTiO3-based piezoelectric ceramics via phase boundary engineering Interfacial coupling mechanism for efficient degradation of tetracycline by heteroatom iodine (I)-doped BiOBr under visible light: Efficacy and driving force Synthesis of molybdenum disulfide/covalent organic frameworks composite for efficient solar-driven hydrogen production and pollutant degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1