T. K. Akabane, C. M. Chiessi, M. Hirota, I. Bouimetarhan, M. Prange, S. Mulitza, D. J. Bertassoli Jr, C. Häggi, A. Staal, G. Lohmann, N. Boers, A. L. Daniau, R. S. Oliveira, M. C. Campos, X. Shi, P. E. De Oliveira
{"title":"Weaker Atlantic overturning circulation increases the vulnerability of northern Amazon forests","authors":"T. K. Akabane, C. M. Chiessi, M. Hirota, I. Bouimetarhan, M. Prange, S. Mulitza, D. J. Bertassoli Jr, C. Häggi, A. Staal, G. Lohmann, N. Boers, A. L. Daniau, R. S. Oliveira, M. C. Campos, X. Shi, P. E. De Oliveira","doi":"10.1038/s41561-024-01578-z","DOIUrl":null,"url":null,"abstract":"<p>The Atlantic meridional overturning circulation (AMOC) and the Amazon forest are viewed as connected tipping elements in a warming climate system. If global warming exceeds a critical threshold, the AMOC may slow down substantially, changing atmospheric circulation and leading to Amazonia becoming drier in the north and wetter in the south. Yet, the impact of an AMOC slowdown on Amazon vegetation is still not well constrained. Here we use pollen and microcharcoal data from a marine sediment core to assess changes in Amazon vegetation from 25,000 to 12,500 years ago. Additionally, we model vegetation responses to an AMOC slowdown under both glacial and pre-industrial conditions. During a past AMOC slowdown (Heinrich Stadial 1–18,000 to 14,800 years ago), pollen data evidence a decline in cold- and moist-affinity elements, coupled with a rise in seasonal tropical vegetation. This pattern is consistent with the decline in suitability of northern Amazon moist forests in a model with an imposed 50% AMOC weakening under glacial conditions. Our modelling results suggest similar changes for a comparable AMOC slowdown under pre-industrial conditions. Combined with current disturbances such as deforestation and wildfires elsewhere in the basin, an AMOC slowdown may exert a systemic impact on the Amazon forest.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"3 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41561-024-01578-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Atlantic meridional overturning circulation (AMOC) and the Amazon forest are viewed as connected tipping elements in a warming climate system. If global warming exceeds a critical threshold, the AMOC may slow down substantially, changing atmospheric circulation and leading to Amazonia becoming drier in the north and wetter in the south. Yet, the impact of an AMOC slowdown on Amazon vegetation is still not well constrained. Here we use pollen and microcharcoal data from a marine sediment core to assess changes in Amazon vegetation from 25,000 to 12,500 years ago. Additionally, we model vegetation responses to an AMOC slowdown under both glacial and pre-industrial conditions. During a past AMOC slowdown (Heinrich Stadial 1–18,000 to 14,800 years ago), pollen data evidence a decline in cold- and moist-affinity elements, coupled with a rise in seasonal tropical vegetation. This pattern is consistent with the decline in suitability of northern Amazon moist forests in a model with an imposed 50% AMOC weakening under glacial conditions. Our modelling results suggest similar changes for a comparable AMOC slowdown under pre-industrial conditions. Combined with current disturbances such as deforestation and wildfires elsewhere in the basin, an AMOC slowdown may exert a systemic impact on the Amazon forest.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.