Accelerating the reaction kinetics of Ni1−xO/Ni(OH)2/NF by defect engineering for urea-assisted water splitting†

IF 3.3 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Dalton Transactions Pub Date : 2024-11-01 DOI:10.1039/D4DT02871F
Yuan Rui, Zong Li, Miaohui Wang, Yunxia Liu, Haiping Lin, Peipei Huang and Qing Li
{"title":"Accelerating the reaction kinetics of Ni1−xO/Ni(OH)2/NF by defect engineering for urea-assisted water splitting†","authors":"Yuan Rui, Zong Li, Miaohui Wang, Yunxia Liu, Haiping Lin, Peipei Huang and Qing Li","doi":"10.1039/D4DT02871F","DOIUrl":null,"url":null,"abstract":"<p >Developing electrocatalysts with fast reaction kinetics for the urea oxidation reaction (UOR) in the field of sustainable hydrogen production through urea-assisted water splitting remains challenging. Here, Ni<small><sub>1−<em>x</em></sub></small>O/Ni(OH)<small><sub>2</sub></small> supported on nickel foam (Ni<small><sub>1−<em>x</em></sub></small>O/Ni(OH)<small><sub>2</sub></small>/NF) is prepared <em>via</em> a defect engineering strategy by combining Zn doping and acid etching. The doped Zn species are partially removed, facilitating the formation of NiOOH during acid etching. Residual Zn species modulate the electronic structure of nickel sites, which intrinsically accelerate the reaction kinetics of Ni<small><sub>1−<em>x</em></sub></small>O/Ni(OH)<small><sub>2</sub></small>/NF. Ni<small><sub>1−<em>x</em></sub></small>O/Ni(OH)<small><sub>2</sub></small>/NF exhibits excellent performance for the UOR with a low potential of 1.346 V <em>versus</em> the reversible hydrogen electrode to attain 100 mA cm<small><sup>−2</sup></small>, fast reaction kinetics (18.7 mV dec<small><sup>−1</sup></small>), and excellent stability in an alkaline electrolyte. The enhanced reaction kinetics of Ni<small><sub>1−<em>x</em></sub></small>O/Ni(OH)<small><sub>2</sub></small>/NF are clearly elucidated by <em>operando</em> electrochemical impedance spectroscopy and <em>in situ</em> Raman spectroscopy. Our study offers an effective approach for designing promising Ni-based UOR catalysts for the practical application of urea-assisted water splitting.</p>","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":" 1","pages":" 144-151"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dt/d4dt02871f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Developing electrocatalysts with fast reaction kinetics for the urea oxidation reaction (UOR) in the field of sustainable hydrogen production through urea-assisted water splitting remains challenging. Here, Ni1−xO/Ni(OH)2 supported on nickel foam (Ni1−xO/Ni(OH)2/NF) is prepared via a defect engineering strategy by combining Zn doping and acid etching. The doped Zn species are partially removed, facilitating the formation of NiOOH during acid etching. Residual Zn species modulate the electronic structure of nickel sites, which intrinsically accelerate the reaction kinetics of Ni1−xO/Ni(OH)2/NF. Ni1−xO/Ni(OH)2/NF exhibits excellent performance for the UOR with a low potential of 1.346 V versus the reversible hydrogen electrode to attain 100 mA cm−2, fast reaction kinetics (18.7 mV dec−1), and excellent stability in an alkaline electrolyte. The enhanced reaction kinetics of Ni1−xO/Ni(OH)2/NF are clearly elucidated by operando electrochemical impedance spectroscopy and in situ Raman spectroscopy. Our study offers an effective approach for designing promising Ni-based UOR catalysts for the practical application of urea-assisted water splitting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过缺陷工程加速 Ni1-xO/Ni(OH)2/NF 的反应动力学,实现脲辅助水分离
在通过尿素辅助水分离实现可持续制氢的领域中,开发具有快速反应动力学的尿素氧化反应(UOR)电催化剂仍然具有挑战性。在这里,通过掺杂锌和酸蚀刻相结合的缺陷工程策略,制备了支撑在泡沫镍上(Ni1-xO/Ni(OH)2/NF)的 Ni1-xO/Ni(OH)2。在酸蚀刻过程中,掺杂的 Zn 物种被部分去除,促进了 NiOOOH 的形成。残留的 Zn 物质调节了镍位点的电子结构,从本质上加速了 Ni1-xO/Ni(OH)2/NF 的反应动力学。Ni1-xO/Ni(OH)2/NF 在 UOR 方面表现出色,与可逆氢电极相比,其电位低至 1.346 V,可达到 100 mA cm-2,反应动力学速度快(18.7 mV dec-1),在碱性电解质中具有极佳的稳定性。操作电化学阻抗谱和原位拉曼光谱研究清楚地阐明了 Ni1-xO/Ni(OH)2/NF 的增强反应动力学。我们的研究为尿素辅助水分离的实际应用提供了一种有效的方法来设计有前景的镍基 UOR 催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
期刊最新文献
Temperature-controlled synthesis of MOF-derived Ni3S2/C nanocomposites for high-performance supercapacitors Dinuclear Copper(I) Halide Complexes Containing Unsymmetric Diphosphine: Structure, Photophysical and Photocatalytic Hydrogen Production Properties Confinement of Cd(II) by 2,2′ -Bipyridyl: Control of Structural Transformations and Porosity in Perfluorinated Biphenyldicarboxylate MOFs Crystal structure elucidation and luminescence properties of a blue-emitting BaMgSi3O8:Eu2+ phosphor with an alkali feldspar structure. Solvation structure of potassium bis(trifluoromethylsulfonyl)imide-glyme highly concentrated electrolytes and cycling on organic cathodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1