Phase-Coherent Transport in GeSn Alloys on Si

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-11-01 DOI:10.1002/aelm.202400565
Prateek Kaul, Omar Concepción, Daan H. Wielens, Patrick Zellekens, Chuan Li, Zoran Ikonic, Koji Ishibashi, Qing-Tai Zhao, Alexander Brinkman, Detlev Grützmacher, Dan Buca
{"title":"Phase-Coherent Transport in GeSn Alloys on Si","authors":"Prateek Kaul, Omar Concepción, Daan H. Wielens, Patrick Zellekens, Chuan Li, Zoran Ikonic, Koji Ishibashi, Qing-Tai Zhao, Alexander Brinkman, Detlev Grützmacher, Dan Buca","doi":"10.1002/aelm.202400565","DOIUrl":null,"url":null,"abstract":"Germanium-Tin (GeSn) is a novel semiconductor Group IV alloy that can be tuned from indirect to direct bandgap semiconductors by adjusting the Sn content. This property makes this alloy class attractive for integrated photonic applications and high-mobility electronic devices. In this work, the GeSn alloy properties are investigated in the view of applications fields such as spintronics and quantum computing. Using low-temperature magneto-transport measurements, electron interference effects and deriving typical mesoscopic benchmark parameters such as the phase-coherence length in GeSn-based Hall bar structures for Sn concentrations up to 14 at.% is investigated. Furthermore, Shubnikov–de Haas oscillations provide direct access to the effective mass of the Γ-valley electrons as well as the charge carrier mobility. This work provides a new insight into advanced group IV alloys desired for the study of spin dynamics and its quantum computing applications.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"35 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400565","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Germanium-Tin (GeSn) is a novel semiconductor Group IV alloy that can be tuned from indirect to direct bandgap semiconductors by adjusting the Sn content. This property makes this alloy class attractive for integrated photonic applications and high-mobility electronic devices. In this work, the GeSn alloy properties are investigated in the view of applications fields such as spintronics and quantum computing. Using low-temperature magneto-transport measurements, electron interference effects and deriving typical mesoscopic benchmark parameters such as the phase-coherence length in GeSn-based Hall bar structures for Sn concentrations up to 14 at.% is investigated. Furthermore, Shubnikov–de Haas oscillations provide direct access to the effective mass of the Γ-valley electrons as well as the charge carrier mobility. This work provides a new insight into advanced group IV alloys desired for the study of spin dynamics and its quantum computing applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅基 GeSn 合金中的相干传输
锗锡(GeSn)是一种新型的第四族半导体合金,可通过调整锡的含量从间接带隙半导体调整为直接带隙半导体。这一特性使该合金类别在集成光子应用和高移动性电子器件方面具有吸引力。本研究从自旋电子学和量子计算等应用领域的角度研究了 GeSn 合金的特性。通过低温磁传输测量、电子干扰效应和典型介观基准参数的推导,研究了锡浓度高达 14%的 GeSn 霍尔条结构中的相干长度。此外,舒布尼科夫-德哈斯振荡还提供了直接获取Γ谷电子有效质量以及电荷载流子迁移率的途径。这项工作为研究自旋动力学及其量子计算应用所需的先进 IV 族合金提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
In-Sensor Computing-Based Smart Sensing Architecture Implemented Using a Dual-Gate Metal-Oxide Thin-Film Transistor Technology Optimizing MoS2 Electrolyte-Gated Transistors: Stability, Performance, and Sensitivity Enhancements Thermally Stable Ag2Se Nanowire Network as an Effective In‐Materio Physical Reservoir Computing Device Aromaticity‐Dependent Memristive Switching Advancing Neural Networks: Innovations and Impacts on Energy Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1