Tong Ding, Yanfang Zhang, Yuankun Hou, Lei Zhou, Jianxing Zhang, Tengfei Wu, Zhiguo Xing, Sefei Yang
{"title":"Fundamental study on the construction of anti-wear drug delivery system through the design of titanium surface morphology","authors":"Tong Ding, Yanfang Zhang, Yuankun Hou, Lei Zhou, Jianxing Zhang, Tengfei Wu, Zhiguo Xing, Sefei Yang","doi":"10.1016/j.jmst.2024.10.012","DOIUrl":null,"url":null,"abstract":"The durability of dental implant carrier coatings is of paramount importance for the expeditious and predictable osseointegration process. The present work is based on a bionic micro/nano hierarchy structure, which consists of titanium surface microstructures and their internal TiO<sub>2</sub> nanotubes (TNTs) with drug-carrying capacity. This effectively increases the wear resistance of the drug-carrying coating on the titanium surface. In comparison to untextured samples, the wear volume and wear depth of the optimal texture group are markedly diminished, resulting in a significant enhancement of wear resistance. This improvement was primarily attributed to the smaller contact area of the microstructure. Concurrently, the microstructure serves to safeguard the TNTs from damage during friction. The hydrophilic biomimetic anti-wear micro/nano hierarchies demonstrated the capacity to promote MC3T3-E1 cell adhesion and proliferation, while also exhibiting no cytotoxic effects. Moreover, the micro/nano hierarchical structure can be directly applied to the surface of commercialized implants. In simulated clinical conditions, the implant was inserted into a fresh Bama porcine mandible, and the structure of the drug-loading coatings remained intact. This structure enhances the abrasion resistance of the drug coating while minimizing alterations to the original treatment process of the implant, which is of great significance in the clinical application of implant-loaded drug delivery.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"42 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.10.012","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The durability of dental implant carrier coatings is of paramount importance for the expeditious and predictable osseointegration process. The present work is based on a bionic micro/nano hierarchy structure, which consists of titanium surface microstructures and their internal TiO2 nanotubes (TNTs) with drug-carrying capacity. This effectively increases the wear resistance of the drug-carrying coating on the titanium surface. In comparison to untextured samples, the wear volume and wear depth of the optimal texture group are markedly diminished, resulting in a significant enhancement of wear resistance. This improvement was primarily attributed to the smaller contact area of the microstructure. Concurrently, the microstructure serves to safeguard the TNTs from damage during friction. The hydrophilic biomimetic anti-wear micro/nano hierarchies demonstrated the capacity to promote MC3T3-E1 cell adhesion and proliferation, while also exhibiting no cytotoxic effects. Moreover, the micro/nano hierarchical structure can be directly applied to the surface of commercialized implants. In simulated clinical conditions, the implant was inserted into a fresh Bama porcine mandible, and the structure of the drug-loading coatings remained intact. This structure enhances the abrasion resistance of the drug coating while minimizing alterations to the original treatment process of the implant, which is of great significance in the clinical application of implant-loaded drug delivery.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.