{"title":"Synergistic effect of indium doping on thermoelectric performance of cubic GeTe-based thin films","authors":"Suman Abbas , Bhawna Jarwal , Thi-Thong Ho , Suneesh Meledath Valiyaveettil , Cheng-Rong Hsing , Ta-Lei Chou , Ching-Ming Wei , Li-Chyong Chen , Kuei-Hsien Chen","doi":"10.1016/j.mtphys.2024.101581","DOIUrl":null,"url":null,"abstract":"<div><div>Germanium Telluride (GeTe) has been widely explored as a promising lead-free thermoelectric material in its rhombohedral and cubic phases. However, the structural transition between these two phases at ∼700 K causes an abrupt change of thermal expansion coefficient, challenging its broader practical applications. Also, as characterized by multi-valence bands and strong anharmonic interaction, the high-temperature cubic phase exhibits a higher power factor, lower thermal conductivity, and ultimately superior thermoelectric performance than its rhombohedral counterpart. Prompted by these, in this work, the cubic phase of Ge<sub>0.9</sub>Sb<sub>0.1</sub>Te (presented as GeSbTe in the following content) nanocrystalline thin film is successfully realized by RF sputtering followed by post-annealing treatment. Additionally, indium, as an electron donor to the germanium site and an effective scattering center, further moderates carrier concentration, enhances the Seebeck coefficient and reduces thermal conductivity. The optimal composition achieves an estimated peak <span><math><mrow><mi>z</mi><mi>T</mi></mrow></math></span> of ∼1.95 and an estimated average <span><math><mrow><mi>z</mi><mi>T</mi></mrow></math></span> of ∼1.11 within the temperature range of 300 K–575 K, showcasing GeTe as a compelling candidate for applications close to room temperature.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"49 ","pages":"Article 101581"},"PeriodicalIF":10.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002578","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Germanium Telluride (GeTe) has been widely explored as a promising lead-free thermoelectric material in its rhombohedral and cubic phases. However, the structural transition between these two phases at ∼700 K causes an abrupt change of thermal expansion coefficient, challenging its broader practical applications. Also, as characterized by multi-valence bands and strong anharmonic interaction, the high-temperature cubic phase exhibits a higher power factor, lower thermal conductivity, and ultimately superior thermoelectric performance than its rhombohedral counterpart. Prompted by these, in this work, the cubic phase of Ge0.9Sb0.1Te (presented as GeSbTe in the following content) nanocrystalline thin film is successfully realized by RF sputtering followed by post-annealing treatment. Additionally, indium, as an electron donor to the germanium site and an effective scattering center, further moderates carrier concentration, enhances the Seebeck coefficient and reduces thermal conductivity. The optimal composition achieves an estimated peak of ∼1.95 and an estimated average of ∼1.11 within the temperature range of 300 K–575 K, showcasing GeTe as a compelling candidate for applications close to room temperature.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.